Skip to main content

Electrochemical Processes in Manufacturing

  • Reference work entry
  • First Online:
Handbook of Manufacturing Engineering and Technology
  • 26k Accesses

Abstract

Owing to its unique advantages of cost-effectiveness, reliability, and also the atom-by-atom replication on the given substrate surface profile, electrochemical process has been widely used for high-quality coatings. The present chapter presents a review and summary of the principles of electrochemical processes; the microstructure and composition control of metals, metal oxides, silicon, non-oxides, and conductive polymers in electrochemical process; and also their recent applications in microfabrication, energy conversation and storage, self-protection as well as drug delivery, etc.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 1,499.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Al-Salman R et al (2008) Template assisted electrodeposition of germanium and silicon nanowires in an ionic liquid. Phys Chem Chem Phys 10(41):6233–6237

    Article  Google Scholar 

  • Anees AA et al (2011) Optical and electrical properties of electrochemically deposited polyaniline/CeO2 hybrid nanocomposite film. J Semiconduct 32(4):043001

    Article  Google Scholar 

  • Armel V et al (2012) Designed electrodeposition of nanoparticles inside conducting polymers. J Mater Chem 22(37):19767–19773

    Article  Google Scholar 

  • Azaceta E et al (2012) NiO cathodic electrochemical deposition from an aprotic ionic liquid: building metal oxide n–p heterojunctions. Electrochim Acta 71:39–43

    Article  Google Scholar 

  • Bak T et al (2002) Photo-electrochemical hydrogen generation from water using solar energy materials-related aspects. Int J Hydrogen Energ 27(10):991–1022

    Article  Google Scholar 

  • Bechelany M et al (2012) Electrodeposition of amorphous silicon in non-oxygenated organic solvent. Thin Solid Films 520(6):1895–1901

    Article  Google Scholar 

  • Beck F, Hülser P (1990) Electrodeposition of polypyrrole on aluminium from non-aqueous solutions. J Electroanal Chem Interfacial Electrochem 280(1):159–166

    Article  Google Scholar 

  • Chen C-L et al (2010) Fabrication and characterization of electrodeposited bismuth telluride films and nanowires. J Phys Chem C 114(8):3385–3389

    Article  Google Scholar 

  • Cho SI et al (2005) Electrochemical synthesis and fast electrochromics of poly(3,4-ethylenedioxythiophene) nanotubes in flexible substrate. Chem Mater 17(18):4564–4566

    Article  Google Scholar 

  • Chu S-Z et al (2002) Fabrication and characteristics of ordered Ni nanostructures on glass by anodization and direct current electrodeposition. Chem Mater 14(11):4595–4602

    Article  Google Scholar 

  • Datta M (2003) Electrochemical processing technologies in chip fabrication: challenges and opportunities. Electrochim Acta 48(20–22):2975–2985

    Article  Google Scholar 

  • Datta M, Landolt D (2000) Fundamental aspects and applications of electrochemical microfabrication. Electrochim Acta 45(15–16):2535–2558

    Article  Google Scholar 

  • Dubé CE et al (1995) Electrodeposition of metal alloy and mixed oxide films using a single-precursor tetranuclear copper-nickel complex. J Electrochem Soc 142(10):3357–3365

    Article  Google Scholar 

  • Elias J, Tena-Zaera R, Levy-Clement C (2008a) Effect of the chemical nature of the anions on the electrodeposition of ZnO nanowire arrays. J Phys Chem C 112(15):5736–5741

    Article  Google Scholar 

  • Elias J et al (2008b) Conversion of ZnO nanowires into nanotubes with tailored dimensions. Chem Mater 20(21):6633–6637

    Article  Google Scholar 

  • Epur R et al (2012) Electrodeposition of amorphous silicon anode for lithium ion batteries. Mater Sci Eng B 177(14):1157–1162

    Article  Google Scholar 

  • Faust CL, Thomas B (1939) Electrodeposition of silver-lead alloys for bearings. Trans Electrochem Soc 75(1):185–199

    Article  Google Scholar 

  • Fernandes V et al (2009) Electrodeposition of nanocrystalline CeO2 on Si(001). J Electrochem Soc 156(12):E199–E204

    Article  Google Scholar 

  • Fusco S et al (2013) Chitosan electrodeposition for microrobotic drug delivery. Adv Healthcare Mater 2(7):1037–1044

    Article  Google Scholar 

  • Gadkari S, Nayfeh T (2008) Micro fabrication using electro deposition and ultrasonic acoustic liquid manipulation. Int J Adv Manuf Technol 39(1–2):107–117

    Article  Google Scholar 

  • Gao XP et al (2004) Preparation and electrochemical performance of polycrystalline and single crystalline CuO nanorods as anode materials for Li Ion battery. J Phys Chem B 108(18):5547–5551

    Article  Google Scholar 

  • Gelling VJ, Wiest MM, Tallman DE, Bierwagen GP, Wallace GG (2001) Electroactive conducting polymers for corrosion control: 4. Studies of poly(3-octyl pyrrole) and poly(3-octadecyl pyrrole) on aluminum 2024-T3 alloy. Prog Org Coat 43:149

    Article  Google Scholar 

  • Gelves GA et al (2006) Multigram synthesis of copper nanowires using ac electrodeposition into porous aluminium oxide templates. J Mater Chem 16(30):3075–3083

    Article  Google Scholar 

  • Gu J, Fahrenkrug E, Maldonado S (2013) Direct electrodeposition of crystalline silicon at Low temperatures. J Am Chem Soc 135(5):1684–1687

    Article  Google Scholar 

  • He Y-B et al (2011) Single-crystal ZnO nanorod/amorphous and nanoporous metal oxide shell composites: controllable electrochemical synthesis and enhanced supercapacitor performances. Energy Environ Sci 4(4):1288–1292

    Article  Google Scholar 

  • Hinton BRW, Wilson L (1989) The corrosion inhibition of zinc with cerous chloride. Corros Sci 29(8):967–985

    Article  Google Scholar 

  • Hu S-Y et al (2012) A novel synthesis of a CuInSe2 thin film from electrodeposited Cu–Se–in–Se precursors with three steps annealing. J Nanosci Nanotechnol 12(9):7226–7232

    Article  Google Scholar 

  • Kelly JJ (1979) The influence of fluoride ions on the passive dissolution of titanium. Electrochim Acta 24(12):1273–1282

    Article  Google Scholar 

  • Kendig MW et al (1994) Electrodeposition of mixed metal oxides from the eutectic sodium-potassium nitrate melt. J Electrochem Soc 141(2):392–397

    Article  Google Scholar 

  • Kloke A et al (2012) Cyclic electrodeposition of PtCu alloy: facile fabrication of highly porous platinum electrodes. Adv Mater 24(21):2916–2921

    Article  Google Scholar 

  • Ku J-R et al (2004) Fabrication of nanocables by electrochemical deposition inside metal nanotubes. J Am Chem Soc 126(46):15022–15023

    Article  Google Scholar 

  • LaVan DA (2003) McGuire, Terry, Langer, Robert, small-scale systems for in vivo drug delivery. Nat Biotech 21(10):1184–1191

    Article  Google Scholar 

  • LaVan DA, George PM, Langer R (2003) Simple, three-dimensional microfabrication of electrodeposited structures. Angew Chem Int Ed 42(11):1262–1265

    Article  Google Scholar 

  • Li FB, Albery WJ (1992) Electrochemical deposition of a conducting polymer, poly(thiophene-3-acetic acid): the first observation of individual events of polymer nucleation and two-dimensional layer-by-layer growth. Langmuir 8(6):1645–1653

    Article  Google Scholar 

  • Luo X, Cui XT (2011) Electrochemical deposition of conducting polymer coatings on magnesium surfaces in ionic liquid. Acta Biomater 7(1):441–446

    Article  Google Scholar 

  • Macak JM, Sirotna K, Schmuki P (2005a) Self-organized porous titanium oxide prepared in Na2SO4/NaF electrolytes. Electrochim Acta 50(18):3679–3684

    Article  Google Scholar 

  • Macak JM et al (2005b) Glattwandige anodische TiO2-nanoröhren. Angew Chem 117(45):7629–7632

    Article  Google Scholar 

  • Magnussen OM, Hotlos J, Nichols RJ, Kolb DM, Behm RJ (1990) Atomic structure of Cu adlayers on Au(100) and Au(111) electrodes observed by in situ scanning tunneling microscopy. Phys Rev Lett 64(24):2929

    Article  Google Scholar 

  • Magri P, Boulanger C, Lecuire J-M (1996) Synthesis, properties and performances of electrodeposited bismuth telluride films. J Mater Chem 6(5):773–779

    Article  Google Scholar 

  • Mallet J et al (2013) Electrodeposition of silicon nanotubes at room temperature using ionic liquid. Phys Chem Chem Phys 15(39):16446–16449

    Article  Google Scholar 

  • Marder AR (2000) The metallurgy of zinc-coated steel. Progr Mater Sci 45(3):191–271

    Article  Google Scholar 

  • McCullough JC, Reiff OM (1924) Prevention of case-hardening by copper plating. Ind Eng Chem 16(6):611–613

    Article  Google Scholar 

  • Murotani A, Fuchigami T, Atobe M (2008) Mechanistic study on electrochemical deposition of conjugated polymers in centrifugal fields. J Phys Chem B 112(31):9311–9317

    Article  Google Scholar 

  • Nozik AJ (1975) Photoelectrolysis of water using semiconducting Tio2 crystals. Nature 257(5525):383–386

    Article  Google Scholar 

  • Ocko BM et al (1990) In situ x-ray reflectivity and diffraction studies of the Au(001) reconstruction in an electrochemical cell. Phys Rev Lett 65(12):1466–1469

    Article  Google Scholar 

  • Ogata YH, Kobayashi K, Motoyama M (2006) Electrochemical metal deposition on silicon. Curr Opin Solid State Mater Sci 10(3–4):163–172

    Article  Google Scholar 

  • Osaka T (2000) Electrodeposition of highly functional thin films for magnetic recording devices of the next century. Electrochim Acta 45(20):3311–3321

    Article  Google Scholar 

  • Pan H et al (2005) Growth of single-crystalline Ni and Co nanowires via electrochemical deposition and their magnetic properties. J Phys Chem B 109(8):3094–3098

    Article  Google Scholar 

  • Paunovic M (2007) Electrochemical deposition. In: Encyclopedia of electrochemistry. Wiley-VCH, Weinheim

    Google Scholar 

  • Peng Z et al (2010) Electrochemical synthesis and catalytic property of sub-10 nm platinum cubic nanoboxes. Nano Lett 10(4):1492–1496

    Article  Google Scholar 

  • Qu NS, Zhu D, Chan KC (2006) Fabrication of Ni–CeO2 nanocomposite by electrodeposition. Scr Mater 54(7):1421–1425

    Article  Google Scholar 

  • Revie RW, Uhlig HH (2008) Corrosion and corrosion control: an introduction to corrosion science and engineering, 4th edn. Wiley, Hoboken, p 490 p

    Book  Google Scholar 

  • Rossmeisl J et al (2007) Electrolysis of water on oxide surfaces. J Electroanal Chem 607(1–2):83–89

    Article  Google Scholar 

  • Roy P, Berger S, Schmuki P (2011) TiO2 nanotubes: synthesis and applications. Angew Chem Int Ed 50(13):2904–2939

    Article  Google Scholar 

  • Saadat S et al (2011) Template-free electrochemical deposition of interconnected ZnSb nanoflakes for Li-Ion battery anodes. Chem Mater 23(4):1032–1038

    Article  Google Scholar 

  • Schrebler R et al (2006) An electrochemical deposition route for obtaining α-Fe2O3 thin films. Electrochem Solid-State Lett 9(7):C110–C113

    Article  Google Scholar 

  • Shinomiya T, Gupta V, Miura N (2006) Effects of electrochemical-deposition method and microstructure on the capacitive characteristics of nano-sized manganese oxide. Electrochim Acta 51(21):4412–4419

    Article  Google Scholar 

  • Sonnenfeld R, Schardt BC (1986) Tunneling microscopy in an electrochemical cell: images of Ag plating. Appl Phys Lett 49(18):1172

    Article  Google Scholar 

  • Sovannary P, Suresh R, Vijay PS (2007) Copper indium diselenide nanowire arrays by electrodeposition in porous alumina templates. Nanotechnology 18(47):475601

    Article  Google Scholar 

  • Srivastava RD, Mukerjee RC (1976) Electrodeposition of binary alloys: an account of recent developments. J Appl Electrochem 6(4):321–331

    Article  Google Scholar 

  • Stevenson KJ, Hurtt GJ, Hupp JT (1999) High resolution assembly of patterned metal oxide thin films via microtransfer molding and electrochemical deposition techniques. Electrochem Solid-State Lett 2(4):175–177

    Article  Google Scholar 

  • Tallman DE et al (2004) Electrodeposition of conducting polymers on active metals by electron transfer mediation. Current Appl Phys 4(2–4):137–140

    Article  Google Scholar 

  • Tench D, Warren LF (1983) Electrodeposition of conducting transition metal oxide/hydroxide films from aqueous solution. J Electrocheml Soc 130(4):869–872

    Article  Google Scholar 

  • Tian M et al (2003) Electrochemical growth of single-crystal metal nanowires via a two-dimensional nucleation and growth mechanism. Nano Lett 3(7):919–923

    Article  Google Scholar 

  • Trevor DJ, Chidsey CED, Loiacono DN (1989) In situ scanning-tunneling-microscope observation of roughening, annealing, and dissolution of gold (111) in an electrochemical cell. Phys Rev Lett 62(8):929–932

    Article  Google Scholar 

  • Tsang CK, Xu Z, Li YY (2009) Metal-based photonic coatings from electrochemical deposition. J Electrochem Soc 156(11):D508–D512

    Article  Google Scholar 

  • Wang J-G et al (2005) Controllable template synthesis of superconducting Zn nanowires with different microstructures by electrochemical deposition. Nano Lett 5(7):1247–1253

    Article  Google Scholar 

  • Wang Z-L et al (2010) Electrochemical deposition of Eu3 + −doped CeO2 nanobelts with enhanced optical properties. J Phys Chem C 115(2):351–356

    Article  Google Scholar 

  • Wang Z-L et al (2011) Tuning magnetic properties of CeO2 by Fe doping via an electrochemical deposition route. Chem Phys Chem 12(1):166–171

    Google Scholar 

  • Wei H et al (2011) Three kinds of Cu2O/ZnO heterostructure solar cells fabricated with electrochemical deposition and their structure-related photovoltaic properties. CrystEngComm 13(20):6065–6070

    Article  Google Scholar 

  • Wei HM et al (2012) Photovoltaic efficiency enhancement of Cu2O solar cells achieved by controlling homojunction orientation and surface microstructure. J Phys Chem C 116(19):10510–10515

    Article  Google Scholar 

  • Wessling B, Posdorfer J (1999) Corrosion prevention with an organic metal (polyaniline): corrosion test results. Electrochim Acta 44(12):2139–2147

    Article  Google Scholar 

  • Wu S et al (2010a) Electrochemical deposition of semiconductor oxides on reduced graphene oxide-based flexible, transparent, and conductive electrodes. J Phys Chem C 114(27):11816–11821

    Article  Google Scholar 

  • Wu M-S, Guo Z-S, Jow J-J (2010b) Highly regulated electrodeposition of needle-like manganese oxide nanofibers on carbon fiber fabric for electrochemical capacitors. J Phys Chem C 114(49):21861–21867

    Article  Google Scholar 

  • Xu L et al (2012) Vertically cobalt nanoplate arrays based on one-step electrochemical growth and their magnetic properties. J Phys Chem C 116(4):2801–2806

    Article  Google Scholar 

  • Yu G et al (2011) Solution-processed graphene/MnO2 nanostructured textiles for high-performance electrochemical capacitors. Nano Lett 11(7):2905–2911

    Article  Google Scholar 

  • Zaban A, Diamant Y (2000) Electrochemical deposition of organic semiconductors on high surface area electrodes for solar cells. J Phys Chem B 104(43):10043–10046

    Article  Google Scholar 

  • Zhang Z et al (2009) Synthesis and electrochemical sensing toward heavy metals of bunch-like bismuth nanostructures. Nanoscale Res Lett 5(2):398–402

    Article  Google Scholar 

  • Zhao G et al (2012) Electrodeposited Si film with excellent stability and high rate performance for lithium-ion battery anodes. Mater Lett 76:55–58

    Article  Google Scholar 

  • Zhou XJ et al (2004) Parametric study on electrochemical deposition of copper nanoparticles on an ultrathin polypyrrole film deposited on a gold film electrode. Langmuir 20(12):5109–5113

    Article  Google Scholar 

  • Zwilling V et al (1999) Structure and physicochemistry of anodic oxide films on titanium and TA6V alloy. Surf Interface Anal 27(7):629–637

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dewei Chu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag London

About this entry

Cite this entry

Younis, A., Chu, D., Li, S. (2015). Electrochemical Processes in Manufacturing. In: Nee, A. (eds) Handbook of Manufacturing Engineering and Technology. Springer, London. https://doi.org/10.1007/978-1-4471-4670-4_32

Download citation

Publish with us

Policies and ethics