Electrochemical Processes in Manufacturing

Reference work entry

Abstract

Owing to its unique advantages of cost-effectiveness, reliability, and also the atom-by-atom replication on the given substrate surface profile, electrochemical process has been widely used for high-quality coatings. The present chapter presents a review and summary of the principles of electrochemical processes; the microstructure and composition control of metals, metal oxides, silicon, non-oxides, and conductive polymers in electrochemical process; and also their recent applications in microfabrication, energy conversation and storage, self-protection as well as drug delivery, etc.

Keywords

Surfactant Nickel Foam DMSO Mold 

References

  1. Al-Salman R et al (2008) Template assisted electrodeposition of germanium and silicon nanowires in an ionic liquid. Phys Chem Chem Phys 10(41):6233–6237CrossRefGoogle Scholar
  2. Anees AA et al (2011) Optical and electrical properties of electrochemically deposited polyaniline/CeO2 hybrid nanocomposite film. J Semiconduct 32(4):043001CrossRefGoogle Scholar
  3. Armel V et al (2012) Designed electrodeposition of nanoparticles inside conducting polymers. J Mater Chem 22(37):19767–19773CrossRefGoogle Scholar
  4. Azaceta E et al (2012) NiO cathodic electrochemical deposition from an aprotic ionic liquid: building metal oxide n–p heterojunctions. Electrochim Acta 71:39–43CrossRefGoogle Scholar
  5. Bak T et al (2002) Photo-electrochemical hydrogen generation from water using solar energy materials-related aspects. Int J Hydrogen Energ 27(10):991–1022CrossRefGoogle Scholar
  6. Bechelany M et al (2012) Electrodeposition of amorphous silicon in non-oxygenated organic solvent. Thin Solid Films 520(6):1895–1901CrossRefGoogle Scholar
  7. Beck F, Hülser P (1990) Electrodeposition of polypyrrole on aluminium from non-aqueous solutions. J Electroanal Chem Interfacial Electrochem 280(1):159–166CrossRefGoogle Scholar
  8. Chen C-L et al (2010) Fabrication and characterization of electrodeposited bismuth telluride films and nanowires. J Phys Chem C 114(8):3385–3389CrossRefGoogle Scholar
  9. Cho SI et al (2005) Electrochemical synthesis and fast electrochromics of poly(3,4-ethylenedioxythiophene) nanotubes in flexible substrate. Chem Mater 17(18):4564–4566CrossRefGoogle Scholar
  10. Chu S-Z et al (2002) Fabrication and characteristics of ordered Ni nanostructures on glass by anodization and direct current electrodeposition. Chem Mater 14(11):4595–4602CrossRefGoogle Scholar
  11. Datta M (2003) Electrochemical processing technologies in chip fabrication: challenges and opportunities. Electrochim Acta 48(20–22):2975–2985CrossRefGoogle Scholar
  12. Datta M, Landolt D (2000) Fundamental aspects and applications of electrochemical microfabrication. Electrochim Acta 45(15–16):2535–2558CrossRefGoogle Scholar
  13. Dubé CE et al (1995) Electrodeposition of metal alloy and mixed oxide films using a single-precursor tetranuclear copper-nickel complex. J Electrochem Soc 142(10):3357–3365CrossRefGoogle Scholar
  14. Elias J, Tena-Zaera R, Levy-Clement C (2008a) Effect of the chemical nature of the anions on the electrodeposition of ZnO nanowire arrays. J Phys Chem C 112(15):5736–5741CrossRefGoogle Scholar
  15. Elias J et al (2008b) Conversion of ZnO nanowires into nanotubes with tailored dimensions. Chem Mater 20(21):6633–6637CrossRefGoogle Scholar
  16. Epur R et al (2012) Electrodeposition of amorphous silicon anode for lithium ion batteries. Mater Sci Eng B 177(14):1157–1162CrossRefGoogle Scholar
  17. Faust CL, Thomas B (1939) Electrodeposition of silver-lead alloys for bearings. Trans Electrochem Soc 75(1):185–199CrossRefGoogle Scholar
  18. Fernandes V et al (2009) Electrodeposition of nanocrystalline CeO2 on Si(001). J Electrochem Soc 156(12):E199–E204CrossRefGoogle Scholar
  19. Fusco S et al (2013) Chitosan electrodeposition for microrobotic drug delivery. Adv Healthcare Mater 2(7):1037–1044CrossRefGoogle Scholar
  20. Gadkari S, Nayfeh T (2008) Micro fabrication using electro deposition and ultrasonic acoustic liquid manipulation. Int J Adv Manuf Technol 39(1–2):107–117CrossRefGoogle Scholar
  21. Gao XP et al (2004) Preparation and electrochemical performance of polycrystalline and single crystalline CuO nanorods as anode materials for Li Ion battery. J Phys Chem B 108(18):5547–5551CrossRefGoogle Scholar
  22. Gelling VJ, Wiest MM, Tallman DE, Bierwagen GP, Wallace GG (2001) Electroactive conducting polymers for corrosion control: 4. Studies of poly(3-octyl pyrrole) and poly(3-octadecyl pyrrole) on aluminum 2024-T3 alloy. Prog Org Coat 43:149CrossRefGoogle Scholar
  23. Gelves GA et al (2006) Multigram synthesis of copper nanowires using ac electrodeposition into porous aluminium oxide templates. J Mater Chem 16(30):3075–3083CrossRefGoogle Scholar
  24. Gu J, Fahrenkrug E, Maldonado S (2013) Direct electrodeposition of crystalline silicon at Low temperatures. J Am Chem Soc 135(5):1684–1687CrossRefGoogle Scholar
  25. He Y-B et al (2011) Single-crystal ZnO nanorod/amorphous and nanoporous metal oxide shell composites: controllable electrochemical synthesis and enhanced supercapacitor performances. Energy Environ Sci 4(4):1288–1292CrossRefGoogle Scholar
  26. Hinton BRW, Wilson L (1989) The corrosion inhibition of zinc with cerous chloride. Corros Sci 29(8):967–985CrossRefGoogle Scholar
  27. Hu S-Y et al (2012) A novel synthesis of a CuInSe2 thin film from electrodeposited Cu–Se–in–Se precursors with three steps annealing. J Nanosci Nanotechnol 12(9):7226–7232CrossRefGoogle Scholar
  28. Kelly JJ (1979) The influence of fluoride ions on the passive dissolution of titanium. Electrochim Acta 24(12):1273–1282CrossRefGoogle Scholar
  29. Kendig MW et al (1994) Electrodeposition of mixed metal oxides from the eutectic sodium-potassium nitrate melt. J Electrochem Soc 141(2):392–397CrossRefGoogle Scholar
  30. Kloke A et al (2012) Cyclic electrodeposition of PtCu alloy: facile fabrication of highly porous platinum electrodes. Adv Mater 24(21):2916–2921CrossRefGoogle Scholar
  31. Ku J-R et al (2004) Fabrication of nanocables by electrochemical deposition inside metal nanotubes. J Am Chem Soc 126(46):15022–15023CrossRefGoogle Scholar
  32. LaVan DA (2003) McGuire, Terry, Langer, Robert, small-scale systems for in vivo drug delivery. Nat Biotech 21(10):1184–1191CrossRefGoogle Scholar
  33. LaVan DA, George PM, Langer R (2003) Simple, three-dimensional microfabrication of electrodeposited structures. Angew Chem Int Ed 42(11):1262–1265CrossRefGoogle Scholar
  34. Li FB, Albery WJ (1992) Electrochemical deposition of a conducting polymer, poly(thiophene-3-acetic acid): the first observation of individual events of polymer nucleation and two-dimensional layer-by-layer growth. Langmuir 8(6):1645–1653CrossRefGoogle Scholar
  35. Luo X, Cui XT (2011) Electrochemical deposition of conducting polymer coatings on magnesium surfaces in ionic liquid. Acta Biomater 7(1):441–446CrossRefGoogle Scholar
  36. Macak JM, Sirotna K, Schmuki P (2005a) Self-organized porous titanium oxide prepared in Na2SO4/NaF electrolytes. Electrochim Acta 50(18):3679–3684CrossRefGoogle Scholar
  37. Macak JM et al (2005b) Glattwandige anodische TiO2-nanoröhren. Angew Chem 117(45):7629–7632CrossRefGoogle Scholar
  38. Magnussen OM, Hotlos J, Nichols RJ, Kolb DM, Behm RJ (1990) Atomic structure of Cu adlayers on Au(100) and Au(111) electrodes observed by in situ scanning tunneling microscopy. Phys Rev Lett 64(24):2929CrossRefGoogle Scholar
  39. Magri P, Boulanger C, Lecuire J-M (1996) Synthesis, properties and performances of electrodeposited bismuth telluride films. J Mater Chem 6(5):773–779CrossRefGoogle Scholar
  40. Mallet J et al (2013) Electrodeposition of silicon nanotubes at room temperature using ionic liquid. Phys Chem Chem Phys 15(39):16446–16449CrossRefGoogle Scholar
  41. Marder AR (2000) The metallurgy of zinc-coated steel. Progr Mater Sci 45(3):191–271CrossRefGoogle Scholar
  42. McCullough JC, Reiff OM (1924) Prevention of case-hardening by copper plating. Ind Eng Chem 16(6):611–613CrossRefGoogle Scholar
  43. Murotani A, Fuchigami T, Atobe M (2008) Mechanistic study on electrochemical deposition of conjugated polymers in centrifugal fields. J Phys Chem B 112(31):9311–9317CrossRefGoogle Scholar
  44. Nozik AJ (1975) Photoelectrolysis of water using semiconducting Tio2 crystals. Nature 257(5525):383–386CrossRefGoogle Scholar
  45. Ocko BM et al (1990) In situ x-ray reflectivity and diffraction studies of the Au(001) reconstruction in an electrochemical cell. Phys Rev Lett 65(12):1466–1469CrossRefGoogle Scholar
  46. Ogata YH, Kobayashi K, Motoyama M (2006) Electrochemical metal deposition on silicon. Curr Opin Solid State Mater Sci 10(3–4):163–172CrossRefGoogle Scholar
  47. Osaka T (2000) Electrodeposition of highly functional thin films for magnetic recording devices of the next century. Electrochim Acta 45(20):3311–3321CrossRefGoogle Scholar
  48. Pan H et al (2005) Growth of single-crystalline Ni and Co nanowires via electrochemical deposition and their magnetic properties. J Phys Chem B 109(8):3094–3098CrossRefGoogle Scholar
  49. Paunovic M (2007) Electrochemical deposition. In: Encyclopedia of electrochemistry. Wiley-VCH, WeinheimGoogle Scholar
  50. Peng Z et al (2010) Electrochemical synthesis and catalytic property of sub-10 nm platinum cubic nanoboxes. Nano Lett 10(4):1492–1496CrossRefGoogle Scholar
  51. Qu NS, Zhu D, Chan KC (2006) Fabrication of Ni–CeO2 nanocomposite by electrodeposition. Scr Mater 54(7):1421–1425CrossRefGoogle Scholar
  52. Revie RW, Uhlig HH (2008) Corrosion and corrosion control: an introduction to corrosion science and engineering, 4th edn. Wiley, Hoboken, p 490 pCrossRefGoogle Scholar
  53. Rossmeisl J et al (2007) Electrolysis of water on oxide surfaces. J Electroanal Chem 607(1–2):83–89CrossRefGoogle Scholar
  54. Roy P, Berger S, Schmuki P (2011) TiO2 nanotubes: synthesis and applications. Angew Chem Int Ed 50(13):2904–2939CrossRefGoogle Scholar
  55. Saadat S et al (2011) Template-free electrochemical deposition of interconnected ZnSb nanoflakes for Li-Ion battery anodes. Chem Mater 23(4):1032–1038CrossRefGoogle Scholar
  56. Schrebler R et al (2006) An electrochemical deposition route for obtaining α-Fe2O3 thin films. Electrochem Solid-State Lett 9(7):C110–C113CrossRefGoogle Scholar
  57. Shinomiya T, Gupta V, Miura N (2006) Effects of electrochemical-deposition method and microstructure on the capacitive characteristics of nano-sized manganese oxide. Electrochim Acta 51(21):4412–4419CrossRefGoogle Scholar
  58. Sonnenfeld R, Schardt BC (1986) Tunneling microscopy in an electrochemical cell: images of Ag plating. Appl Phys Lett 49(18):1172CrossRefGoogle Scholar
  59. Sovannary P, Suresh R, Vijay PS (2007) Copper indium diselenide nanowire arrays by electrodeposition in porous alumina templates. Nanotechnology 18(47):475601CrossRefGoogle Scholar
  60. Srivastava RD, Mukerjee RC (1976) Electrodeposition of binary alloys: an account of recent developments. J Appl Electrochem 6(4):321–331CrossRefGoogle Scholar
  61. Stevenson KJ, Hurtt GJ, Hupp JT (1999) High resolution assembly of patterned metal oxide thin films via microtransfer molding and electrochemical deposition techniques. Electrochem Solid-State Lett 2(4):175–177CrossRefGoogle Scholar
  62. Tallman DE et al (2004) Electrodeposition of conducting polymers on active metals by electron transfer mediation. Current Appl Phys 4(2–4):137–140CrossRefGoogle Scholar
  63. Tench D, Warren LF (1983) Electrodeposition of conducting transition metal oxide/hydroxide films from aqueous solution. J Electrocheml Soc 130(4):869–872CrossRefGoogle Scholar
  64. Tian M et al (2003) Electrochemical growth of single-crystal metal nanowires via a two-dimensional nucleation and growth mechanism. Nano Lett 3(7):919–923CrossRefGoogle Scholar
  65. Trevor DJ, Chidsey CED, Loiacono DN (1989) In situ scanning-tunneling-microscope observation of roughening, annealing, and dissolution of gold (111) in an electrochemical cell. Phys Rev Lett 62(8):929–932CrossRefGoogle Scholar
  66. Tsang CK, Xu Z, Li YY (2009) Metal-based photonic coatings from electrochemical deposition. J Electrochem Soc 156(11):D508–D512CrossRefGoogle Scholar
  67. Wang J-G et al (2005) Controllable template synthesis of superconducting Zn nanowires with different microstructures by electrochemical deposition. Nano Lett 5(7):1247–1253CrossRefGoogle Scholar
  68. Wang Z-L et al (2010) Electrochemical deposition of Eu3 + −doped CeO2 nanobelts with enhanced optical properties. J Phys Chem C 115(2):351–356CrossRefGoogle Scholar
  69. Wang Z-L et al (2011) Tuning magnetic properties of CeO2 by Fe doping via an electrochemical deposition route. Chem Phys Chem 12(1):166–171Google Scholar
  70. Wei H et al (2011) Three kinds of Cu2O/ZnO heterostructure solar cells fabricated with electrochemical deposition and their structure-related photovoltaic properties. CrystEngComm 13(20):6065–6070CrossRefGoogle Scholar
  71. Wei HM et al (2012) Photovoltaic efficiency enhancement of Cu2O solar cells achieved by controlling homojunction orientation and surface microstructure. J Phys Chem C 116(19):10510–10515CrossRefGoogle Scholar
  72. Wessling B, Posdorfer J (1999) Corrosion prevention with an organic metal (polyaniline): corrosion test results. Electrochim Acta 44(12):2139–2147CrossRefGoogle Scholar
  73. Wu S et al (2010a) Electrochemical deposition of semiconductor oxides on reduced graphene oxide-based flexible, transparent, and conductive electrodes. J Phys Chem C 114(27):11816–11821CrossRefGoogle Scholar
  74. Wu M-S, Guo Z-S, Jow J-J (2010b) Highly regulated electrodeposition of needle-like manganese oxide nanofibers on carbon fiber fabric for electrochemical capacitors. J Phys Chem C 114(49):21861–21867CrossRefGoogle Scholar
  75. Xu L et al (2012) Vertically cobalt nanoplate arrays based on one-step electrochemical growth and their magnetic properties. J Phys Chem C 116(4):2801–2806CrossRefGoogle Scholar
  76. Yu G et al (2011) Solution-processed graphene/MnO2 nanostructured textiles for high-performance electrochemical capacitors. Nano Lett 11(7):2905–2911CrossRefGoogle Scholar
  77. Zaban A, Diamant Y (2000) Electrochemical deposition of organic semiconductors on high surface area electrodes for solar cells. J Phys Chem B 104(43):10043–10046CrossRefGoogle Scholar
  78. Zhang Z et al (2009) Synthesis and electrochemical sensing toward heavy metals of bunch-like bismuth nanostructures. Nanoscale Res Lett 5(2):398–402CrossRefGoogle Scholar
  79. Zhao G et al (2012) Electrodeposited Si film with excellent stability and high rate performance for lithium-ion battery anodes. Mater Lett 76:55–58CrossRefGoogle Scholar
  80. Zhou XJ et al (2004) Parametric study on electrochemical deposition of copper nanoparticles on an ultrathin polypyrrole film deposited on a gold film electrode. Langmuir 20(12):5109–5113CrossRefGoogle Scholar
  81. Zwilling V et al (1999) Structure and physicochemistry of anodic oxide films on titanium and TA6V alloy. Surf Interface Anal 27(7):629–637CrossRefGoogle Scholar

Copyright information

© Springer-Verlag London 2015

Authors and Affiliations

  1. 1.School of Materials Science and EngineeringUniversity of New South WalesSydneyAustralia

Personalised recommendations