Skip to main content

Mechanical Micro-machining

  • Reference work entry
  • First Online:
Book cover Handbook of Manufacturing Engineering and Technology

Abstract

As a result of the current trend toward products miniaturization, there is a demand for development in micro-manufacturing technologies in order to have better quality products, and cheaper, more efficient, and effective processes. Miniaturized products and components in the range from a few hundred micrometers to a few micrometers size are becoming common and widely used in daily human life. The micro-products and micro-components are used in many industries especially related with micro-electromechanical, aerospace, medical, environment, biomedical and biochemical industries, and also in the field of chemistry. Many manufacturing methods have been developed to produce these micro-sized products, namely micro electro mechanical system (MEMS) based processes such as dry etching, lithography, electroplating, ultraviolet - lithographie galvanoformung abformung (UV-LiGA), non-conventional based micro-machining such as micro- electron discharge machining (EDM), and mechanical micro-machining. This chapter discusses mechanical micro-machining especially challenges related with this process. Some main challenges are discussed in this chapter such as size effect, microstructures of the materials, surface quality, burr formation, and micro-tools performance. Some solutions are offered in order to solve these challenges.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 1,499.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adams DP, Vasile MJ, Krishnan ASM (2000) Microgrooving and microthreading tools for fabricating curvilinear features. Precis Eng 24(4):347–356

    Article  Google Scholar 

  • ANSI/ASME B46.1 (1985) Surface texture (surface roughness, waviness and lay). ASME, New York

    Google Scholar 

  • Aramcharoen A, Mativenga PT (2009) Size effect and tool geometry in micromilling of tool steel. Precis Eng 33(4):402–407

    Article  Google Scholar 

  • Aramcharoen A et al (2008) Evaluation and selection of hard coatings for micro milling of hardened tool steel. Int J Mach Tools Manuf 48(14):1578–84

    Article  Google Scholar 

  • Aurich JC et al (2009) Burrs–analysis, control and removal. CIRP Ann Manuf Technol 58(2):519–542

    Article  Google Scholar 

  • Becker EW et al (1986) Fabrication of microstructures with high aspect ratios and great structural heights by synchrotron radiation lithography, galvanoforming, and plastic moulding (LIGA process). Microelectron Eng 4(1):35–56

    Article  Google Scholar 

  • Bissacco G, Hansen HN, De Chiffre L (2005) Micromilling of hardened tool steel for mould making applications. J Mater Process Technol 167(2–3):201–207

    Article  Google Scholar 

  • Bourne KA, Kapoor SG, DeVor RE (2011) Study of the mechanics of the micro-groove cutting process. In: Proceedings of the ASME 2011 international manufacturing science and engineering conference, MSEC2011

    Google Scholar 

  • Chae J, Park SS, Freiheit T (2006) Investigation of micro-cutting operations. Int J Mach Tool Manuf 46:313–332

    Article  Google Scholar 

  • Chern G-L (2006) Experimental observation and analysis of burr formation mechanisms in face milling of aluminum alloys. Int J Mach Tools Manuf 46(12–13):1517–25

    Article  Google Scholar 

  • Chern G-L et al (2007) Study on burr formation in micro-machining using micro-tools fabricated by micro-EDM. Precis Eng 31(2):122–129

    Article  Google Scholar 

  • Dimov S et al (2004) Micromilling strategies: optimization issues. Proc Inst Mech Eng Part B Eng Manuf 218(7):731–736

    Article  Google Scholar 

  • Dornfeld D, Min S, Takeuchi Y (2006) Recent advances in mechanical micromachining. CIRP Ann Manuf Technol 55(2):745–768

    Article  Google Scholar 

  • Fang FZ et al (2003) Tool geometry study in micromachining. J Micromech Microeng 13(5):726

    Article  Google Scholar 

  • Friedrich C, Kikkeri B (1995) Rapid fabrication of molds by mechanical micromilling: process development. In: Microlithography and metrology in micromachining, Austin, TX. Society of Photo-Optical Instrumentation Engineers, Bellingham

    Google Scholar 

  • Furukawa Y, Moronuki N (1988) Effect of material properties on ultra precise cutting processes. CIRP Ann Manuf Technol 37(1):113–116

    Article  Google Scholar 

  • Gillespie LK (1976) Burr formation and properties. Deburring capabilities and limitations. Society of Manufacturing Engineers (SME), Dearborn

    Google Scholar 

  • Gillespie LK (1979) Deburring precision miniature parts. Precis Eng 1(4):189–198

    Article  MathSciNet  Google Scholar 

  • Gillespie LK (1999) Deburring and edge finishing handbook. SME, Dearborn

    Google Scholar 

  • Guber AE et al (2004) Microfluidic lab-on-a-chip systems based on polymers – fabrication and application. Chem Eng J 101(1–3):447–53

    Article  Google Scholar 

  • Hashimura M, Hassamontr J, Dornfeld DA (1999) Effect of in-plane exit angle and rake angles on burr height and thickness in face milling operation. J Manuf Sci Eng 121(1):13–19

    Article  Google Scholar 

  • Hongtao L et al (2008) Modelling and experimental analysis of the effects of tool wear, minimum chip thickness and micro tool geometry on the surface roughness in micro-end-milling. J Micromech Microeng 18(2):025006 (12 pp)

    Article  Google Scholar 

  • Horsch C, Schulze V, Lohe D (2006) Deburring and surface conditioning of micro milled structures by micro peening and ultrasonic wet peening. Microsyst Technol 12(7):691–696

    Article  Google Scholar 

  • Huo D, Cheng K (2010) Experimental investigation on micromilling of oxygen-free, high-conductivity copper using tungsten carbide, chemistry vapour deposition, and single-crystal diamond micro tools. Proce Inst Mech Eng Part B J Eng Manuf 224(6):995–1003

    Article  Google Scholar 

  • Hupert ML et al (2007) Evaluation of micromilled metal mold masters for the replication of microchip electrophoresis devices. Microfluid Nanofluid 3(1):1–11

    Article  Google Scholar 

  • Hyuk-Jin K, Sung-Hoon A (2007) Fabrication and characterization of microparts by mechanical micromachining: precision and cost estimation. Proc Inst Mech Eng B-J Eng 221(B2):231–40

    Google Scholar 

  • Jeong YH et al (2009) Deburring microfeatures using micro-EDM. J Mater Process Technol 209(14):5399–5406

    Article  Google Scholar 

  • Joshi SS, Melkote SN (2004) An explanation for the size-effect in machining using strain gradient plasticity. J Manuf Sci Eng 126(4):679–684

    Article  Google Scholar 

  • Kussul EM et al (1996) Micromechanical engineering: a basis for the low-cost manufacturing of mechanical microdevices using microequipment. J Micromech Microeng 6(4):410–425

    Article  MathSciNet  Google Scholar 

  • Lai X et al (2008) Modelling and analysis of micro scale milling considering size effect, micro cutter edge radius and minimum chip thickness. Int J Mach Tool Manuf 48(1):1–14

    Article  Google Scholar 

  • Lee K, Dornfeld DA (2005) Micro-burr formation and minimization through process control. Precis Eng 29(2):246–252

    Article  Google Scholar 

  • Lee JH, Park SR, Yang SH (2006) Machining a Micro/Meso scale structure using a minaturized machine tool by using a conventional cutting process. J Manuf Sci Eng 128(3):820–825

    Article  Google Scholar 

  • Lekkala R et al (2011) Characterization and modeling of burr formation in micro-end milling. Precis Eng 35(4):625–637

    Article  Google Scholar 

  • Li P et al (2011) Design of micro square endmills for hard milling applications. Int J Adv Manuf Technol 57(9–12):859–870

    Article  Google Scholar 

  • Liang YC et al (2009) Modeling and experimental analysis of microburr formation considering tool edge radius and tool-tip breakage in microend milling. J Vac Sci Technol B 27(3):1531–1535

    Article  Google Scholar 

  • Liow JL (2009) Mechanical micromachining: a sustainable micro-device manufacturing approach? J Cleaner Prod 17(7):662–667

    Article  Google Scholar 

  • Liu K, Melkote SN (2006) Material strengthening mechanisms and their contribution to size effect in micro-cutting. J Manuf Sci Eng 128(3):730–738

    Article  Google Scholar 

  • Liu X et al (2004) The mechanics of machining at the microscale: assessment of the current state of the science. J Manuf Sci Eng, Trans ASME 126(4):666–678

    Article  Google Scholar 

  • Liu X, DeVor RE, Kapoor SG (2006) An analytical model for the prediction of minimum chip thickness in micromachining. J Manuf Sci Eng 128(2):474–481

    Article  Google Scholar 

  • Lucca DA, Rhorer RL, Komanduri R (1991) Energy dissipation in the ultraprecision machining of copper. CIRP Ann Manuf Technol 40(1):69–72

    Article  Google Scholar 

  • Lucca DA, Seo YW, Komanduri R (1993) Effect of tool edge geometry on energy dissipation in ultraprecision machining. CIRP Ann Manuf Technol 42(1):83–86

    Article  Google Scholar 

  • Malekian M, Park SS, Jun MBG (2009) Tool wear monitoring of micro-milling operations. J Mater Process Technol 209(10):4903–4914

    Article  Google Scholar 

  • Mecomber JS, Hurd D, Limbach PA (2005) Enhanced machining of micron-scale features in microchip molding masters by CNC milling. Int J Mach Tool Manuf 45(12–13):1542–1550

    Article  Google Scholar 

  • Miao JC et al (2007) Review of dynamic issues in micro-end-milling. Int J Adv Manuf Technol 31(9–10):897–904

    Article  Google Scholar 

  • Min S et al (2006) Surface and edge quality variation in precision machining of single crystal and polycrystalline materials. Proc Inst Mech Eng Part B J Eng Manuf 220(4):479–487

    Article  Google Scholar 

  • Min S et al (2008) A study on initial contact detection for precision micro-mold and surface generation of vertical side walls in micromachining. CIRP Ann Manuf Technol 57(1):109–112

    Article  Google Scholar 

  • Minowa K, Sumino K (1992) Stress-induced amorphization of a silicon crystal by mechanical scratching. Phys Rev Lett 69(2):320–2

    Article  Google Scholar 

  • Morgan CJ, Vallance RR, Marsh ER (2004) Micro machining glass with polycrystalline diamond tools shaped by micro electro discharge machining. J Micromech Microeng 14(12):1687

    Article  Google Scholar 

  • Park IW, Dornfeld DA (2000) A study of burr formation processes using the finite element method: part II–The influences of exit angle, rake angle, and backup material on burr formation processes. J Eng Mat Technol 122(2):229–237

    Article  Google Scholar 

  • Rusnaldy TK, Kim H (2008) An experimental study on microcutting of silicon using a micromilling machine. Int J Adv Manuf Technol 39(1):85–91

    Article  Google Scholar 

  • Ryu SH, Choi DK, Chu CN (2006) Roughness and texture generation on end milled surfaces. Int J Mach Tool Manuf 46(3–4):404–412

    Article  Google Scholar 

  • Saptaji K, Subbiah S, Dhupia JS (2012) Effect of side edge angle and effective rake angle on top burrs in micro-milling. Precis Eng 36(3):444–450

    Article  Google Scholar 

  • Schaller T et al (1999) Microstructure grooves with a width of less than 50 μm cut with ground hard metal micro end mills. Precis Eng 23(4):229–235

    Article  Google Scholar 

  • Schmidt J, Tritschler H (2004) Micro cutting of steel. Microsys Technol 10(3):167–174

    Article  Google Scholar 

  • Schmidt J et al (2002) Requirements of an industrially applicable microcutting process for steel micro-structures. Microsyst Technol 8(6):402–408

    Article  Google Scholar 

  • Shafer F (1975) Entgraten. Krausskopf-Verlog, Mainz

    Google Scholar 

  • Simoneau A, Ng E, Elbestawi MA (2006a) Chip formation during microscale cutting of a medium carbon steel. Int J Mach Tools Manuf 46(5):467–81

    Article  Google Scholar 

  • Simoneau A, Ng E, Elbestawi MA (2006b) Surface defects during microcutting. Int J Mach Tool Manuf 46(12–13):1378–1387

    Article  Google Scholar 

  • Subbiah S, Melkote SN (2006) The constant force component due to material separation and its contribution to the size effect in specific cutting energy. J Manuf Sci Eng 128(3):811–815

    Article  Google Scholar 

  • Uriarte L et al (2007) Error budget and stiffness chain assessment in a micromilling machine equipped with tools less than 0.3 mm in diameter. Precis Eng 31(1):1–12

    Article  Google Scholar 

  • Venkatachalam S, Liang SY (2007) Effects of ploughing forces and friction coefficient in microscale machining. J Manuf Sci Eng Trans ASME 129(2):274–280

    Article  Google Scholar 

  • Vogler MP, DeVor RE, Kapoor SG (2004) On the modeling and analysis of machining performance in micro-endmilling, part i: Surface generation. J Manuf Sci Eng Trans ASME 126(4):685–694

    Article  Google Scholar 

  • Waldorf DJ, DeVor RE, Kapoor SG (1998) A slip-line field for ploughing during orthogonal cutting. J Manuf Sci Eng 120(4):693–699

    Article  Google Scholar 

  • Wang JS et al (2008) Surface generation analysis in micro end-milling considering the influences of grain. Microsyst Technol 14(7):937–942

    Article  Google Scholar 

  • Weber M et al (2007) Investigation of size-effects in machining with geometrically defined cutting edges. Mach Sci Technol 11(4):447–473

    Article  Google Scholar 

  • Weule H, Huntrup V, Tritschle H (2001) Micro-cutting of steel to meet new requirements in miniaturization. CIRP Ann Manuf Technol 50(1):61–64

    Article  Google Scholar 

  • Yan J et al (2009) Fundamental investigation of subsurface damage in single crystalline silicon caused by diamond machining. Precis Eng 33(4):378–386

    Article  Google Scholar 

  • Yun D, Seo T, Park D (2008) Fabrication of biochips with micro fluidic channels by micro end-milling and powder blasting. Sensors 8(2):1308–1320

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kushendarsyah Saptaji .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag London

About this entry

Cite this entry

Saptaji, K. (2015). Mechanical Micro-machining. In: Nee, A. (eds) Handbook of Manufacturing Engineering and Technology. Springer, London. https://doi.org/10.1007/978-1-4471-4670-4_12

Download citation

Publish with us

Policies and ethics