Fast-Tracking and Regional Anesthesia in Pediatric Patients Undergoing Congenital Heart Surgery

  • Alexander Mittnacht
  • Cesar Rodriguez-Diaz
Reference work entry


Early extubation and adequate postoperative pain control are central components of fast-tracking pediatric patients undergoing congenital heart surgery (CHS). The term fast-tracking is typically associated with the multidisciplinary approach to decreasing morbidity and costs associated with prolonged hospital length of stay. Planning an anesthetic for fast-tracking CHS patients typically includes the use of short-acting anesthetic drugs and, frequently, the use of regional and in particular neuraxial anesthesia techniques. This chapter will focus on the anesthesiologist’s role in fast-tracking pediatric patients undergoing CHS, including anesthetic management, patient selection, and risks and benefits of such an approach.


Epidural Catheter Epidural Hematoma Thoracic Epidural Anesthesia Congenital Heart Surgery Early Extubation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Lake CL (2000) Fast tracking the paediatric cardiac surgical patient. Pediatr Anesth 10:231–236CrossRefGoogle Scholar
  2. 2.
    Mittnacht A, Hollinger I (2010) Fast-tracking in pediatric cardiac surgery – the current standing. Ann Card Anaesth 13:92–101PubMedCrossRefGoogle Scholar
  3. 3.
    Barash PG, Lescovich F, Katz JD et al (1980) Early extubation following pediatric cardiothoracic operation: a viable alternative. Ann Thorac Surg 29:228–233PubMedCrossRefGoogle Scholar
  4. 4.
    Heard GG, Lamberti JJ Jr, Park SM et al (1984) Early extubation after surgical repair of congenital heart disease. Crit Care Med 13:830–832CrossRefGoogle Scholar
  5. 5.
    Schuller JL, Bovill JG, Nijveld A et al (1984) Early extubation of the trachea after open heart surgery for congenital heart disease. A review of 3 years’ experience. Br J Anaesth 56:1101–1108PubMedCrossRefGoogle Scholar
  6. 6.
    Neirotti RA, Jones D, Hackbarth R et al (2002) Early extubation in congenital heart surgery. Heart Lung Circ 11:157–161PubMedCrossRefGoogle Scholar
  7. 7.
    Hickey P, Hansen D (1991) High-dose fentanyl reduces intraoperative ventricular fibrillation in neonates with hypoplastic left heart syndrome. J Clin Anesth 3:285–300CrossRefGoogle Scholar
  8. 8.
    Anand KS, Hickey PR (1992) Halothane-morphine compared with high-dose sufentanil for anesthesia and postoperative analgesia in neonatal cardiac surgery. N Engl J Med 326:1–9PubMedCrossRefGoogle Scholar
  9. 9.
    Aps C, Hunter JA, Williams BT (1986) Anaesthetic management and post-operative care of cardiac surgical patients in a general recovery ward. Anaesthesia 41:533–537PubMedCrossRefGoogle Scholar
  10. 10.
    Engelman RM, Rousou JA, Flack JE 3rd et al (1994) Fast-track recovery of the coronary bypass patient. Ann Thorac Surg 58:1742–1746PubMedCrossRefGoogle Scholar
  11. 11.
    Duncan H, Clode A, Weir PM et al (2000) Infant stress responses in the pre bypass phase of open heart surgery: a comparison of different fentanyl doses. Br J Anaesth 84:556–565PubMedCrossRefGoogle Scholar
  12. 12.
    Gruber E, Laussen P, Casta A et al (2001) Stress response in infants undergoing cardiac surgery: a randomized study of fentanyl bolus, fentanyl infusion and fentanyl-midazolam infusion. Anesth Analg 92:882–890PubMedCrossRefGoogle Scholar
  13. 13.
    Cray SH, Holtby HM, Kartha VM et al (2001) Early tracheal extubation after paediatric cardiac surgery: the use of propofol to supplement low-dose opioid anaesthesia. Paediatr Anaesth 11:465–471PubMedCrossRefGoogle Scholar
  14. 14.
    Lebovic S, Reich DL, Steinberg LG et al (1992) Comparison of propofol vs ketamine for anesthesia in pediatric patients undergoing cardiac catheterization. Anaesth Analg 74:490–494CrossRefGoogle Scholar
  15. 15.
    Mittnacht AJ, Thanjan M, Srivastava S et al (2008) Factors affecting the decision to defer endotracheal extubation after surgery for congenital heart disease: a prospective observational study. J Thorac Cardiovasc Surg 136:88–93PubMedCrossRefGoogle Scholar
  16. 16.
    Laussen PC, Reid RW, Stene RA et al (1996) Tracheal extubation of children in the operating room after atrial septal defect repair as part of a clinical practice guideline. Anaesth Analg 82:988–993Google Scholar
  17. 17.
    Davis P, Wilson A, Siewers R et al (1999) The effects of cardiopulmonary bypass on remifentanil kinetics in children undergoing atrial septal defect repair. Anaesth Analg 89:904–908Google Scholar
  18. 18.
    Zarate E, Latham P, White PF et al (2000) Fast-track cardiac anesthesia: use of remifentanil combined with intrathecal morphine as an alternative to sufentanil during desflurane anesthesia. Anaesth Analg 91:283–287Google Scholar
  19. 19.
    Weale N, Rogers C, Cooper R et al (2004) Effect of remifentanil infusion rate on stress response to the pre-bypass phase of pediatric cardiac surgery. Br J Anaesth 92:1–8CrossRefGoogle Scholar
  20. 20.
    Davis PJ, Galinkin J, McGowan FX et al (2001) A randomized multicenter study of remifentanil compared with halothane in neonates and infants undergoing pyloromyotomy. I. Emergence and recovery profiles. Anaesth Analg 93:1380–1386CrossRefGoogle Scholar
  21. 21.
    Petroz GC, Sikich N, James M et al (2006) A phase I, two-center study of the pharmacokinetics and pharmacodynamics of dexmedetomidine in children. Anesthesiology 105:1098–1110PubMedCrossRefGoogle Scholar
  22. 22.
    Tokuhira N, Atagi K, Shimaoka H et al (2009) Dexmedetomidine sedation for pediatric post-Fontan procedure patients. Pediatr Crit Care Med 10:207–212PubMedCrossRefGoogle Scholar
  23. 23.
    Deutsch E, Tobias JD (2007) Hemodynamic and respiratory changes following dexmedetomidine administration during general anesthesia: sevoflurane vs desflurane. Paediatr Anaesth 17:438–444PubMedCrossRefGoogle Scholar
  24. 24.
    Mahmoud M, Radhakrishman R, Gunter J et al (2010) Effect of increasing depth of dexmedetomidine anesthesia on upper airway morphology in children. Paediatr Anaesth 20:506–515PubMedCrossRefGoogle Scholar
  25. 25.
    Mukhtar AM, Obayah EM, Hassona AM (2006) The use of dexmedetomidine in pediatric cardiac surgery. Anaesth Analg 103:52–56CrossRefGoogle Scholar
  26. 26.
    Mason KP, Lerman J (2011) Review article: dexmedetomidine in children – current knowledge and future applications. Anaesth Analg 113:1129–1142CrossRefGoogle Scholar
  27. 27.
    Lazol JP, Lichtenstein SE, Jooste EH et al (2010) Effect of dexmedetomidine on pulmonary artery pressure after congenital cardiac surgery: a pilot study. Pediatr Crit Care Med 11:589–592PubMedCrossRefGoogle Scholar
  28. 28.
    Sichrovsky TC, Mittal S, Steinberg JS (2008) Dexmedetomidine sedation leading to refractory cardiogenic shock. Anaesth Analg 106:1784–1786CrossRefGoogle Scholar
  29. 29.
    Ingersoll-Weng E, Manecke GR Jr, Thistlethwaite PA (2004) Dexmedetomidine and cardiac arrest. Anesthesiology 100:738–739PubMedCrossRefGoogle Scholar
  30. 30.
    Isik B, Arslan M, Tunga AD, Kurtipek O (2006) Dexmedetomidine decreases emergence agitation in pediatric patients after sevoflurane anesthesia without surgery. Paediatr Anaesth 16:748–753PubMedCrossRefGoogle Scholar
  31. 31.
    Ibacache ME, Munoz HR, Brandes V, Morales AL (2004) Single-dose dexmedetomidine reduces agitation after sevoflurane anesthesia in children. Anaesth Analg 98:60–63CrossRefGoogle Scholar
  32. 32.
    Guler G, Akin A, Tosun Z et al (2005) Single-dose dexmedetomidine reduces agitation and provides smooth extubation after pediatric adenotonsillectomy. Paediatr Anaesth 15:762–766PubMedCrossRefGoogle Scholar
  33. 33.
    Cattabriga I, Pacini D, Lamazza G et al (2007) Intravenous paracetamol as adjunctive treatment for postoperative pain after cardiac surgery: a double blind randomized controlled trial. Eur J Cardiothorac Surg 32:527–531PubMedCrossRefGoogle Scholar
  34. 34.
    Hammer GB, Philip BM, Schroeder AR et al (2005) Prolonged infusion of dexmedetomidine for sedation following tracheal resection. Pediatr Anaesth 15:616–620CrossRefGoogle Scholar
  35. 35.
    Fedaral Drug Agency (2012) Retrieved 6 Feb 2012
  36. 36.
    Iodice FG, Thomas M, Walker I et al (2011) Analgesia in fast-track paediatric cardiac patients. Eur J Cardiothorac Surg 40:610–613PubMedGoogle Scholar
  37. 37.
    Gupta A, Daggett C, Drant S et al (2004) Prospective randomized trial of ketorolac after congenital heart surgery. J Cardiothorac Vasc Anesth 18:454–457PubMedCrossRefGoogle Scholar
  38. 38.
    Gundry SR, Shattuck OH, Razzouk AJ et al (1998) Facile minimally invasive cardiac surgery via ministernotomy. Ann Thorac Surg 65:1100–1104PubMedCrossRefGoogle Scholar
  39. 39.
    Nguyen K, Chin C, Lee DS et al (2007) The axillary incision: a cosmetic approach in congenital cardiac surgery. J Thorac Cardiovasc Surg 134:1358–1360PubMedCrossRefGoogle Scholar
  40. 40.
    Marianeschi SM, Seddio F, McElhinney DB et al (2000) Fast-track congenital heart operations: a less invasive technique and early extubation. Ann Thorac Surg 69:872–876PubMedCrossRefGoogle Scholar
  41. 41.
    Naik SK, Knight A, Elliott M (1991) A prospective randomized study of a modified technique of ultrafiltration during pediatric open-heart surgery. Circulation 84:422–431Google Scholar
  42. 42.
    Steven JM, McGowan FX Jr (2000) Neuraxial blockade for pediatric cardiac surgery: lessons yet to be learned. Anaesth Analg 90:1011–1013CrossRefGoogle Scholar
  43. 43.
    Bösenberg A (2003) Neuraxial blockade and cardiac surgery in children. Pediat Anaesth 13:559–560CrossRefGoogle Scholar
  44. 44.
    Hodgson PS, Neal JM, Pollock JE, Liu SS (1999) The neurotoxicity of drugs given intrathecally (spinal). Anaesth Analg 88:797–809CrossRefGoogle Scholar
  45. 45.
  46. 46.
    Hammer GB, Ngo K, Macario A (2000) A retrospective examination of regional plus general anesthesia in children undergoing open heart surgery. Anaesth Analg 90:1020–1024CrossRefGoogle Scholar
  47. 47.
    Peterson KL, DeCampli WM, Pike NA et al (2000) A report of two hundred twenty cases of regional anesthesia in pediatric cardiac surgery. Anaesth Analg 90:1014–1019CrossRefGoogle Scholar
  48. 48.
    Shayevitz JR, Merkel S, O’Kelly SW et al (1996) Lumbar epidural morphine infusions for children undergoing cardiac surgery. J Cardiothorac Vasc Anesth 10:217–224PubMedCrossRefGoogle Scholar
  49. 49.
    Bosenberg AT, Bland AR, Schulte-Steinberg O, Downing JW (1988) Thoracic epidural anesthesia via caudal route in infants. Anesthesiology 69:265–269PubMedCrossRefGoogle Scholar
  50. 50.
    Tsui BC, Seal R, Koller J et al (2001) Thoracic epidural analgesia via the caudal approach in pediatric patients undergoing fundoplication using nerve stimulation guidance. Anaesth Analg 93:1152–1155CrossRefGoogle Scholar
  51. 51.
    Tsui BC, Wagner A, Cave D, Kearney R (2004) Thoracic and lumbar epidural analgesia via the caudal approach using electrical stimulation guidance in pediatric patients: a review of 289 patients. Anesthesiology 100:683–689PubMedCrossRefGoogle Scholar
  52. 52.
    Blanco D, Llamazares J, Rincon R et al (1996) Thoracic epidural anesthesia via the lumbar approach in infants and children. Anesthesiology 84:1312–1316PubMedCrossRefGoogle Scholar
  53. 53.
    Gunter JB, Eng CE (1992) Thoracic epidural anesthesia via the caudal approach in children. Anesthesiology 76:935–938PubMedCrossRefGoogle Scholar
  54. 54.
    Humphreys N, Bays SM, Parry AJ et al (2005) Spinal anesthesia with an indwelling catheter reduces the stress response in pediatric open heart surgery. Anesthesiology 103:1113–1120PubMedCrossRefGoogle Scholar
  55. 55.
    Bevacqua BK (2003) Continuous spinal anaesthesia: what’s new and what’s not. Best Pract Res Clin Anaesthesiol 17:393–406PubMedCrossRefGoogle Scholar
  56. 56.
    Bailey BL, Rhondeau S, Schafer PG et al (1993) Dose–response pharmacology of intrathecal morphine in human volunteers. Anesthesiology 79:49–59PubMedCrossRefGoogle Scholar
  57. 57.
    Stoelting RK (1989) Intrathecal morphine – an under used combination for postoperative pain management. Anaesth Analg 68:707–709CrossRefGoogle Scholar
  58. 58.
    Rowney DA, Doyle E (1998) Epidural and subarachnoid blockade in children. Anaesthesia 53:980–1001PubMedCrossRefGoogle Scholar
  59. 59.
    Hammer GB, Ramamoorthy C, Cao H et al (2005) Postoperative analgesia after spinal blockade in infants and children undergoing cardiac surgery. Anaesth Analg 100:1283–1288CrossRefGoogle Scholar
  60. 60.
    Rosen KR, Rosen DA (1989) Caudal epidural morphine for control of pain following open heart surgery in children. Anesthesiology 70:418–421PubMedCrossRefGoogle Scholar
  61. 61.
    Teyin E, Derbent A, Balcioglu T, Cokmez B (2006) The efficacy of caudal morphine or bupivacaine combined with general anesthesia on postoperative pain and neuroendocrine stress response in children. Paediatr Anaesth 16:290–296PubMedCrossRefGoogle Scholar
  62. 62.
    Kirnφ K, Friberg P, Grzegorczyk A et al (1994) Thoracic epidural anesthesia during coronary artery bypass surgery: effects on cardiac sympathetic activity, myocardial blood flow and metabolism, and central hemodynamics. Anaesth Analg 79:1075–1081Google Scholar
  63. 63.
    Moore CM, Cross MH, Desborough JP et al (1995) Hormonal effects of thoracic extradural analgesia for cardiac surgery. Br J Anaesth 75:387–393PubMedCrossRefGoogle Scholar
  64. 64.
    Tenenbein PK, Debrouwere R, Maguire D et al (2008) Thoracic epidural analgesia improves pulmonary function in patients undergoing cardiac surgery. Can J Anaesth 55:344–350PubMedCrossRefGoogle Scholar
  65. 65.
    Leyvi G, Taylor DG, Reith E et al (2005) Caudal anesthesia in pediatric cardiac surgery: does it affect outcome? J Cardiothorac Vasc Anesth 19:734–738PubMedCrossRefGoogle Scholar
  66. 66.
    Rojas-Pιrez E, Castillo-Zamora C, Nava-Ocampo AA (2003) A randomized trial of caudal block with bupivacaine 4 mg/kg (1.8 ml/kg) plus morphine (150 mcg/kg) vs general anaesthesia with fentanyl for cardiac surgery. Paediatr Anaesth 13:311–317CrossRefGoogle Scholar
  67. 67.
    Jones SEF, Beasley JM, Macfarlane DWR et al (1984) Intrathecal morphine for postoperative pain relief in children. Br J Anaesth 56:137–140PubMedCrossRefGoogle Scholar
  68. 68.
    Finkel JC, Boltz MG, Conran AM et al (2003) Hemodynamic changes during spinal anesthesia in children undergoing open heart surgery. Paediatr Anaesth 13:48–52PubMedCrossRefGoogle Scholar
  69. 69.
    Rosen DA, Rosen KR, Hammer GB (2002) Pro: regional anesthesia is an important component of the anesthetic technique for pediatric patients undergoing cardiac surgical procedures. J Cardiothorac Vasc Anesth 16:374–378PubMedCrossRefGoogle Scholar
  70. 70.
    Lee JJ, Rubin AP (1994) Comparison of a bupivacaine-clonidine mixture with plain bupivacaine for caudal analgesia in children. Br J Anaesth 72:258–262PubMedCrossRefGoogle Scholar
  71. 71.
    Ivani G, De Negri P, Conio A et al (2000) Ropivacaine-clonidine combination for caudal blockade in children. Acta Anaesthesiol Scand 44:446–449PubMedCrossRefGoogle Scholar
  72. 72.
    De Negri P, Ivani G, Visconti C et al (2001) The dose–response relationship for clonidine added to a postoperative continuous epidural infusion of ropivacaine in children. Anaesth Analg 93:71–76CrossRefGoogle Scholar
  73. 73.
    Naguib M, Sharif A, Seraj M et al (1991) Ketamine for caudal analgesia in children: comparison with caudal bupivacaine. Br J Anaesth 67:559–564PubMedCrossRefGoogle Scholar
  74. 74.
    Cook B, Grubb DJ, Aldridge LA, Doyle E (1995) Comparison of the effects of adrenaline, clonidine and ketamine on the duration of caudal analgesia produced by bupivacaine in children. Br J Anaesth 75:698–701PubMedCrossRefGoogle Scholar
  75. 75.
    Birbicer H, Doruk N, Cinel I et al (2007) Could adding magnesium as adjuvant to ropivacaine in caudal anaesthesia improve postoperative pain control? Pediatr Surg Int 23:195–198PubMedCrossRefGoogle Scholar
  76. 76.
    Atallah MMM, Saber HI, Mageed NA et al (2011) Feasibility of adding magnesium to intrathecal fentanyl in pediatric cardiac surgery. Egypt J Anaesth 27:173–180CrossRefGoogle Scholar
  77. 77.
    Bilir A, Gulec S, Erkan A, Ozcelik A (2007) Epidural magnesium reduces postoperative analgesic requirement. Br J Anaesth 98:519–523PubMedCrossRefGoogle Scholar
  78. 78.
    Buvanendran A, McCarthy RJ, Kroin JS et al (2002) Intrathecal magnesium prolongs fentanyl analgesia: a prospective, randomized, controlled trial. Anaesth Analg 95:661–666Google Scholar
  79. 79.
    Lönnqvist PA, Ivani G, Moriarty T (2002) Use of caudal–epidural opioids in children: still state of the art or the beginning of the end? Pediatr Anaesth 12:747–749CrossRefGoogle Scholar
  80. 80.
    Karmakar M, Booker P, Franks R, Pozzi M (1996) Continuous extrapleural paravertebral infusion of bupivacaine for post-thoracotomy analgesia in young infants. Br J Anaesth 76:811–815PubMedCrossRefGoogle Scholar
  81. 81.
    Eng J, Sabanathan S (1992) Continuous paravertebral block for postthoracotomy analgesia in children. J Pediatr Surg 26:556–557CrossRefGoogle Scholar
  82. 82.
    Semsroth M, Plattner O, Horcher E (1996) Effective pain relief with continuous interpleural bupivacaine after thoracotomy in infants and children. Paediatr Anaesth 6:303–310PubMedCrossRefGoogle Scholar
  83. 83.
    Tobias JD (1999) Application of interpleural analgesia in the pediatric population. Am J Anaesth 26:75–80Google Scholar
  84. 84.
    Tirotta CF, Munro HM, Salvaggio J et al (2009) Continuous incisional infusion of local anesthetic in pediatric patients following open heart surgery. Paediatr Anaesth 19:571–576PubMedCrossRefGoogle Scholar
  85. 85.
    Chaudhary V, Chauhan S, Choudhury M et al (2012) Parasternal intercostal block with ropivacaine for postoperative analgesia in pediatric patients undergoing cardiac surgery: a double-blind, randomized, controlled study. J Cardiothorac Vasc Anesth 26:439–442PubMedCrossRefGoogle Scholar
  86. 86.
    Davies R, Myles P, Graham J (2006) A comparison of the analgesic efficacy and side-effects of paravertebral vs epidural blockade for thoracotomy – a systematic review and meta-analysis of randomized trials. Br J Anaesth 96:418–426PubMedCrossRefGoogle Scholar
  87. 87.
    Boezaart AP, Lucas SD, Elliott CE (2009) Paravertebral block: cervical, thoracic, lumbar, and sacral. Curr Opin Anaesthesiol 22:637–643PubMedCrossRefGoogle Scholar
  88. 88.
    Rose JB, Watcha MF (1999) Postoperative nausea and vomiting in paediatric patients. Br J Anaesth 83:104–117PubMedCrossRefGoogle Scholar
  89. 89.
    Jeon Y, Hwang J, Kang J et al (2005) Effects of epidural naloxone on pruritus induced by epidural morphine: a randomized controlled trial. Int J Obstet Anesth 14:22–25PubMedCrossRefGoogle Scholar
  90. 90.
    Sekiyama H (2006) Dexmedetomidine suppresses morphine-induced scratching behavior and spinal c-Fos expression in mice. Anesthesiology 105:A1458Google Scholar
  91. 91.
    Oberlander TF, Berde CB, Lam KH et al (1995) Infants tolerate spinal anesthesia with minimal overall autonomic changes: analysis of heart rate variability in former premature infants undergoing hernia repair. Anaesth Analg 80:20–27Google Scholar
  92. 92.
    Weiner MM, Rosenblatt MA, Mittnacht AJ (2012) Neuraxial anesthesia and timing of heparin administration in patients undergoing surgery for congenital heart disease using cardiopulmonary bypass. J Cardiothorac Vasc Anesth 26:581–584PubMedCrossRefGoogle Scholar
  93. 93.
    Chakravarthy M, Jawali V, Patil TA et al (2003) High thoracic epidural anesthesia as the sole anesthetic for performing multiple grafts in off-pump coronary artery bypass surgery. J Cardiothorac Vasc Anesth 17:160PubMedCrossRefGoogle Scholar
  94. 94.
    Kessler P, Neidhart G, Bremerich DH et al (2002) High thoracic epidural anesthesia for coronary artery bypass grafting using two different surgical approaches in conscious patients. Anaesth Analg 95:791Google Scholar
  95. 95.
    Meininger D, Neidhart G, Bremerich DH et al (2003) Coronary artery bypass grafting via sternotomy in conscious patients. World J Surg 27:534PubMedCrossRefGoogle Scholar
  96. 96.
    Karagoz HY, Kurtoglu M, Bakkaloglu B et al (2003) Coronary artery bypass grafting in the awake patient: three years’ experience in 137 patients. J Thorac Cardiovasc Surg 125:1401PubMedCrossRefGoogle Scholar
  97. 97.
    Bracco D, Hemmerling T (2007) Epidural analgesia in cardiac surgery: an updated risk assessment. Heart Surg Forum 10:E334–E337PubMedCrossRefGoogle Scholar
  98. 98.
    Ho AM, Chung DC, Joynt GM (2000) Neuraxial blockade and hematoma in cardiac surgery: estimating the risk of a rare adverse event that has not (yet) occurred. Chest 117:551PubMedCrossRefGoogle Scholar
  99. 99.
    Rosen DA, Hawkinberry DW 2nd, Rosen KR et al (2004) An epidural hematoma in an adolescent patient after cardiac surgery. Anaesth Analg 98:966–969CrossRefGoogle Scholar
  100. 100.
    Chakravarthy M, Thimmangowda P, Krishnamurthy J et al (2005) Thoracic epidural anesthesia in cardiac surgical patients: a prospective audit of 2,113 cases. J Cardiothorac Vasc Anesth 19:44PubMedCrossRefGoogle Scholar
  101. 101.
    Jack ES, Scott NB (2006) The risk of vertebral canal complications in 2837 cardiac surgery patients with thoracic epidurals. Acta Anaesthesiol Scand 51:722–725PubMedCrossRefGoogle Scholar
  102. 102.
    Royse CF, Soeding PF, Royse AG (2007) High thoracic epidural analgesia for cardiac surgery: an audit of 874 cases. Anaesth Intensive Care 35:374–377PubMedGoogle Scholar
  103. 103.
    Pastor MC, Sanchez MJ, Casas MA et al (2003) Thoracic epidural analgesia in coronary artery bypass graft surgery: seven years’ experience. J Cardiothorac Vasc Anesth 17:154PubMedCrossRefGoogle Scholar
  104. 104.
    Horlocker TT, Abel MD, Messick JM Jr, Schroeder DR (2003) Small risk of serious neurologic complications related to lumbar epidural catheter placementin anesthetized patients. Anaesth Analg 96:1547–1552CrossRefGoogle Scholar
  105. 105.
    Horlocker TT, Wedel DJ, Rowlingson JC et al (2010) Executive summary: regional anesthesia in the patient receiving antithrombotic or thrombolytic therapy American Society of Regional Anesthesia and Pain Medicine Evidence-Based Guidelines (third edn). Reg Anesth Pain Med 35:102–105PubMedCrossRefGoogle Scholar
  106. 106.
    Heinle JS, Diaz LK, Fox LS (1997) Early extubation after cardiac operations in neonates and young infants. J Cardiovasc Surg 114:413–418Google Scholar
  107. 107.
    Vida VL, Leon-Wyss J, Rojas M et al (2006) Pulmonary artery hypertension: is it really a contraindicating factor for early extubation in children after cardiac surgery? Ann Thorac Surg 81:1460–1465PubMedCrossRefGoogle Scholar
  108. 108.
    Kin N, Weismann C, Srivastava S et al (2011) Factors affecting the decision to defer extubation after surgery for congenital heart disease – a prospective observational study. Anaesth Analg 113:329–335CrossRefGoogle Scholar
  109. 109.
    Giglia TM, Humpl T (2010) Preoperative pulmonary hemodynamics and assessment of operability: is there a pulmonary vascular resistance that precludes cardiac operation? Pediatr Crit Care Med 11:S57–S69PubMedCrossRefGoogle Scholar
  110. 110.
    Székely A, Sápi E, Király L et al (2006) Intraoperative and postoperative risk factors for prolonged mechanical ventilation after pediatric cardiac surgery. Paediatr Anaesth 16:1166–1175PubMedGoogle Scholar
  111. 111.
    Davis S, Worley S, Mee RB et al (2004) Factors associated with early extubation after cardiac surgery in young children. Pediatr Crit Care Med 5:63–68PubMedCrossRefGoogle Scholar
  112. 112.
    Harrison AM, Cox AC, Davis S et al (2002) Failed extubation after cardiac surgery in young children: prevalence, pathogenesis, and risk factors. Pediatr Crit Care Med 3:148–152PubMedCrossRefGoogle Scholar
  113. 113.
    DiNardo JA (2011) Con: extubation in the operating room following pediatric cardiac surgery. J Cardiothorac Vasc Anesth 25:877–879PubMedCrossRefGoogle Scholar
  114. 114.
    Mittnacht AJ (2011) Pro: early extubation following surgery for congenital heart disease. J Cardiothorac Vasc Anesth 25:874–876PubMedCrossRefGoogle Scholar
  115. 115.
    Vricella LA, Dearani JA, Gundry SR et al (2000) Ultra fast track in elective congenital cardiac surgery. Ann Thorac Surg 69:865–871PubMedCrossRefGoogle Scholar
  116. 116.
    Neirotti RA, Jones D, Hackbarth R, Paxson Fosse G (2002) Early extubation in congenital heart surgery. Heart Lung Circ 11:157–161PubMedCrossRefGoogle Scholar
  117. 117.
    Kloth RL, Baum VC (2002) Very early extubation in children after cardiac surgery. Crit Care Med 30:787–791PubMedCrossRefGoogle Scholar
  118. 118.
    Preisman S, Lembersky H, Yusim Y et al (2009) A randomized trial of outcomes of anesthetic management directed to very early extubation after cardiac surgery in children. J Cardiothorac Vasc Anesth 23:348–357PubMedCrossRefGoogle Scholar
  119. 119.
    Lofland GK (2001) The enhancement of hemodynamic performance in Fontan circulation using pain free spontaneous ventilation. Eur J Cardiothorac Surg 20:114–118PubMedCrossRefGoogle Scholar
  120. 120.
    Morales DL, Carberry KE, Heinle JS et al (2008) Extubation in the operating room after Fontan’s procedure: effect on practice and outcomes. Ann Thorac Surg 86:576–581PubMedCrossRefGoogle Scholar
  121. 121.
    Alghamdi AA, Singh SK, Hamilton BC et al (2010) Early extubation after pediatric cardiac surgery: systematic review, meta-analysis, and evidence-based recommendations. J Cardiovasc Surg 25:586–595Google Scholar
  122. 122.
    Cheng DC, Karski J, Pensiton C et al (1996) Early tracheal extubation after coronary artery bypass graft surgery reduces costs and improves resource use: a prospective, randomized, controlled trial. Anesthesiology 85:1300–1310PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag London 2014

Authors and Affiliations

  1. 1.AnesthesiologyIcahn School of Medicine at Mount SinaiNew YorkUSA
  2. 2.Icahn School of Medicine at Mount SinaiNew YorkUSA

Personalised recommendations