Optimal Experiment Design, Signal Transduction Pathways
Reference work entry
DOI: https://doi.org/10.1007/978-1-4419-9863-7_1226
Definition
Optimal experiment design is a key component for building accurate models of signal transduction pathways (Kreutz and Timmer 2009). Since experiment design is conducted prior to parameter estimation, any experiment design procedure needs to explicitly be able to deal with parameter uncertainty.
For a mathematical definition of optimal experiment design, assume that a regression model is given by
$$ {\mathbf{y}} = {\mathbf{g}}\left( {{\mathbf{\theta }};{\mathbf{\xi }}} \right) $$
This is a preview of subscription content, log in to check access.
References
- Atkinson AC, Donev AN, Tobias RD (2007) Optimum experimental designs, with SAS. Oxford University Press, EnglandGoogle Scholar
- Chaloner K, Verdinelli I (1995) Bayesian experimental design: a review. Stat Sci 10(3):273–304Google Scholar
- Chu YF, Hahn J (2010) Quantitative optimal experimental design using global sensitivity analysis via quasi-linearization. Ind Eng Chem Res 49(17):7782–7794Google Scholar
- Huang ZY, Chu YF, Hahn J (2010) Model simplification procedure for signal transduction pathway models: an application to IL-6 signaling. Chem Eng Sci 65(6):1964–1975Google Scholar
- Kreutz C, Timmer J (2009) Systems biology: experimental design. FEBS J 276(4):923–942PubMedGoogle Scholar
- Saltelli A, Ratto M, Andres T, Campolongo F, Cariboni J, Gatelli D, Saisana M, Tarantola S (2008) Global sensitivity analysis. The primer. Wiley, EnglandGoogle Scholar
Copyright information
© Springer Science+Business Media, LLC 2013