Graph Searching and Related Problems

Reference work entry


Suppose that there is a robber hiding on vertices or along edges of a graph or digraph. Graph searching is concerned with finding the minimum number of searchers required to capture the robber. Major results of graph searching problems are surveyed, focusing on algorithmic, structural, and probabilistic aspects of the field.


Random Graph Tree Decomposition Domination Number Chordal Graph Connected Search 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Recommended Reading

  1. 1.
    I. Adler, Directed tree-width examples. J. Comb. Theory Ser. B 97, 718–725 (2007)MATHGoogle Scholar
  2. 2.
    M. Aigner, M. Fromme, A game of cops and robbers. Discret. Appl. Math. 8, 1–12 (1984)MathSciNetMATHGoogle Scholar
  3. 3.
    N. Alon, P. Pralat, R. Wormald, Cleaning regular graphs with brushes. SIAM J. Discret. Math. 23, 233–250 (2008)MathSciNetMATHGoogle Scholar
  4. 4.
    B. Alspach, Sweeping and searching in graphs: a brief survey. Matematiche 5, 95–37 (2006)Google Scholar
  5. 5.
    B. Alspach, D. Dyer, D. Hanson, B. Yang, Arc searching digraphs without jumping, in Proceedings of the 1st International Conference on Combinatorial Optimization and Applications (COCOA’07), Xi’an, China, 2007Google Scholar
  6. 6.
    B. Alspach, D. Dyer, D. Hanson, B. Yang, Lower bounds on edge searching, in Proceedings of the 1st International Symposium on Combinatorics, Algorithms, Probabilistic and Experimental Methodologies (ESCAPE’07), Hangzhou, China. Lecture Notes in Computer Science, vol. 4614, 2007, pp. 516–527Google Scholar
  7. 7.
    B. Alspach, D. Dyer, D. Hanson, B. Yang, Time constrained Searching. Theor. Comput. Sci. 399, 158–168 (2008)MathSciNetMATHGoogle Scholar
  8. 8.
    T. Andreae, Note on a pursuit game played on graphs. Discret. Appl. Math. 9, 111–115 (1984)MathSciNetMATHGoogle Scholar
  9. 9.
    T. Andreae, On a pursuit game played on graphs for which a minor is excluded. J. Comb. Theory Ser. B 41, 37–47 (1986)MathSciNetMATHGoogle Scholar
  10. 10.
    K. Appel, W. Haken, J. Koch, Every planar map is four colorable. Ill. J. Math. 21, 439–567 (1977)Google Scholar
  11. 11.
    S. Arnborg, D. Corneil, A. Proskurowski, Complexity of finding embeddings in a k-tree. SIAM J. Algebr. Discret. Methods 8, 277–284 (1987)MathSciNetMATHGoogle Scholar
  12. 12.
    W. Baird, A. Bonato, Meyniel’s conjecture on the cop number: a survey. J. Comb. 3, 225–238 (2012)MathSciNetMATHGoogle Scholar
  13. 13.
    J. Barat, Directed path-width and monotonicity in digraph searching. Graphs Comb. 22, 161–172 (2005)MathSciNetGoogle Scholar
  14. 14.
    L. Barrière, P. Flocchini, P. Fraigniaud, N. Santoro, Capture of an intruder by mobile agents, in Proceedings of the 14th Annual ACM Symposium on Parallel Algorithms and Architectures (SPAA’02), Winnipeg, MB, Canada, 2002Google Scholar
  15. 15.
    L. Barrière, P. Fraigniaud, N. Santoro, D. Thilikos, Searching is not jumping, in Proceedings of the 29th Workshop on Graph Theoretic Concepts in Computer Science (WG’03), Elspeet, The Netherlands, 2003Google Scholar
  16. 16.
    M. Bender, A. Fernández, D. Ron, A. Sahai, S. Vadhan, The power of a pebble: exploring and mapping directed graphs, in Proceedings of the 30th Annual ACM Symposium on Theory of Computing (STOC’98), Dallas, TX, 1998Google Scholar
  17. 17.
    A. Berarducci, B. Intrigila, On the cop number of a graph. Adv. Appl. Math. 14, 389–403 (1993)MathSciNetMATHGoogle Scholar
  18. 18.
    D. Berwanger, E. Grädel, Entanglement – a measure for the complexity of directed graphs with applications to logic and games, in Proceedings of the 11th International Conference on Logic for Programming, Artificial Intelligence, Montevideo, Uruguay, 2004Google Scholar
  19. 19.
    D. Berwanger, A. Dawar, P. Hunter, S. Kreutzer, DAG-width and parity games, in Proceedings of the 23rd Symposium of Theoretical Aspects of Computer Science (STACS’06), Marseille, France, 2006Google Scholar
  20. 20.
    T. Biedl, T. Chan, Y. Ganjali, M.T. Hajiaghayi, D. Wood, Balanced vertex-ordering of graphs. Discret. Appl. Math. 148, 27–48 (2005)MathSciNetMATHGoogle Scholar
  21. 21.
    D. Bienstock, Graph searching, path-width, tree-width and related problems (a survey), DIMACS Ser. Discret. Math. Theor. Comput. Sci. 5, 33–49 (1991)MathSciNetGoogle Scholar
  22. 22.
    D. Bienstock, P. Seymour, Monotonicity in graph searching. J. Algorithms 12, 239–245 (1991)MathSciNetMATHGoogle Scholar
  23. 23.
    H.L. Bodlaender, A partial k-arboretum of graphs with bounded treewidth. Theor. Comput. Sci. 209, 1–45 (1998)MathSciNetMATHGoogle Scholar
  24. 24.
    H. Bodlaender, F. Fomin, Approximation of pathwidth of outerplanar graphs. J. Algorithms 43, 190–200 (2002)MathSciNetMATHGoogle Scholar
  25. 25.
    H. Bodlaender, T. Kloks, Efficient and constructive algorithms for the pathwidth and treewidth of graphs. J. Algorithms 21, 358–402 (1996)MathSciNetMATHGoogle Scholar
  26. 26.
    B. Bollobás, Random Graphs. Cambridge Studies in Advanced Mathematics, vol. 73, 2nd edn. (Cambridge University Press, Cambridge, 2001)MATHGoogle Scholar
  27. 27.
    B. Bollobás, G. Kun, I. Leader, Cops and robbers in a random graph, Preprint 2013Google Scholar
  28. 28.
    A. Bonato, D. Delić, On a problem of Cameron’s on inexhaustible graphs. Combinatorica 24, 35–51 (2004)MathSciNetMATHGoogle Scholar
  29. 29.
    A. Bonato, R.J. Nowakowski, The Game of Cops and Robbers on Graphs (American Mathematical Society, Providence, 2011)MATHGoogle Scholar
  30. 30.
    A. Bonato, G. Hahn, C. Wang, The cop density of a graph. Contrib. Discret. Math. 2, 133–144 (2007)MathSciNetMATHGoogle Scholar
  31. 31.
    A. Bonato, G. Hahn, P.A. Golovach, J. Kratochvíl, The capture time of a graph. Discret. Math. 309, 5588–5595 (2009)MATHGoogle Scholar
  32. 32.
    A. Bonato, P. Prałat, C. Wang, Pursuit-evasion in models of complex networks. Internet Math. 4, 419–436 (2009)Google Scholar
  33. 33.
    A. Bonato, E. Chiniforooshan, P. Prałat, Cops and Robbers from a distance. Theor. Comput. Sci. 411, 3834–3844 (2010)MATHGoogle Scholar
  34. 34.
    A. Bonato, G. Hahn, C. Tardif, Large classes of infinite k-cop-win graphs. J. Graph Theory 65, 334–242 (2010)MathSciNetMATHGoogle Scholar
  35. 35.
    A. Bonato, G. Kemkes, P. Prałat, Almost all cop-win graphs contain a universal vertex. Discret. Math. 312, 1652–1657 (2012)MATHGoogle Scholar
  36. 36.
    R. Breisch, An intuitive approach to speleotopology. Southwest. Cavers 6, 72–78 (1967)Google Scholar
  37. 37.
    P.J. Cameron, The random graph, in The Mathematics of Paul Erdős, II. Algorithms and Combinatorics, vol. 14 (Springer, Berlin, 1997), pp. 333–351Google Scholar
  38. 38.
    P. Chebyshev, Mémoire sur les nombres premiers. Mém. Acad. Sci. St. Pétersbourg 7, 17–33 (1850)Google Scholar
  39. 39.
    E. Chiniforooshan, A better bound for the cop number of general graphs. J. Graph Theory 58, 45–48 (2008)MathSciNetMATHGoogle Scholar
  40. 40.
    F.R.K. Chung, On the cutwidth and the topological bandwidth of a tree. SIAM J. Algebr. Discret. Methods 6, 268–277 (1985)MATHGoogle Scholar
  41. 41.
    F.R.K. Chung, Pebbling in Hypercubes. SIAM J. Discret. Math. 2, 467–472 (1989)MATHGoogle Scholar
  42. 42.
    N.E. Clarke, Constrained Cops and Robber, Ph.D. Thesis, Dalhousie University, 2002Google Scholar
  43. 43.
    N.E. Clarke, G. MacGillivray, Characterizations of k-copwin graphs. Discret. Math. 312, 1421–1425 (2012)MathSciNetMATHGoogle Scholar
  44. 44.
    N.E. Clarke, R.J. Nowakowski, Cops, robber, and traps. Util. Math. 60, 91–98 (2001)MathSciNetMATHGoogle Scholar
  45. 45.
    S. Cook, R. Sethi, Storage requirements for deterministic polynomial time recognizable languages. J. Comput. Syst. Sci. 13, 25–37 (1976)MathSciNetMATHGoogle Scholar
  46. 46.
    B. Crull, T. Cundiff, P. Feltman, G. Hurlbert, L. Pudwell, Z. Szaniszlo, Z. Tuza, The cover pebbling number of graphs. Discret. Math. 296, 15–23 (2005)MathSciNetMATHGoogle Scholar
  47. 47.
    N. Dendris, L. Kirousis, D. Thilikos, Fugitive-search games on graphs and related parameters. Theor. Comput. Sci. 172, 233–254 (1997)MathSciNetMATHGoogle Scholar
  48. 48.
    D. Dereniowski, From Pathwidth to Connected Pathwidth, in Proceedings of the 28th Symposium on Theoretical Aspects of Computer Science (STACS’11), Dortmund, Germany, 2011Google Scholar
  49. 49.
    R. Diestel, Graph Theory (Springer, New York, 2000)Google Scholar
  50. 50.
    P.A. Dreyer, Applications and Variations of Domination in Graphs, Ph.D. Dissertation, Department of Mathematics, Rutgers University, 2000Google Scholar
  51. 51.
    D. Dyer, B. Yang, Ö. Yaşar, On the fast searching problem, in Proceedings of the 4th International Conference on Algorithmic Aspects in Information and Management (AAIM’08), Shanghai, China, 2008Google Scholar
  52. 52.
    J. Ellis, I. Sudborough, J. Turner, The vertex separation and search number of a graph. Inf. Comput. 113, 50–79 (1994)MathSciNetMATHGoogle Scholar
  53. 53.
    P. Erdős, A. Rényi, On random graphs I. Publ. Math. Debr. 6, 290–297 (1959)Google Scholar
  54. 54.
    P. Erdős, A. Rényi, On the evolution of random graphs. Publ. Math. Inst. Hungar. Acad. Sci. 5, 17–61 (1960)Google Scholar
  55. 55.
    P. Erdős, A. Rényi, Asymmetric graphs. Acta Math. Acad. Sci. Hungar. 14, 295–315 (1963)MathSciNetGoogle Scholar
  56. 56.
    M. Fellows, M. Langston, On search, decision and the efficiency of polynomial time algorithm, in Proceedings of the 21st ACM Symposium on Theory of Computing (STOC’89), Seattle, WA, 1989Google Scholar
  57. 57.
    P. Fraigniaud, N. Nisse, Monotony properties of connected visible graph searching. Inf. Comput. 206, 1383–1393 (2008)MathSciNetMATHGoogle Scholar
  58. 58.
    M. Frankling, Z. Galil, M. Yung, Eavesdropping games: a graph-theoretic approach to privacy in distributed systems. J. ACM 47, 225–243 (2000)MathSciNetGoogle Scholar
  59. 59.
    F.V. Fomin, P. Golovach, Graph searching and interval completion. SIAM J. Discret. Math. 13, 454–464 (2000)MathSciNetMATHGoogle Scholar
  60. 60.
    F.V. Fomin, N. Petrov, Pursuit-evasion and search problems on graphs, in Proceedings of the Twenty-seventh Southeastern International Conference on Combinatorics, Graph Theory and Computing, Baton Rouge, LA, 1996Google Scholar
  61. 61.
    F.V. Fomin, D. Thilikos, On the monotonicity of games generated by symmetric submodular functions. Discret. Appl. Math. 131, 323–335 (2003)MathSciNetMATHGoogle Scholar
  62. 62.
    F.V. Fomin, D. Thilikos, An annotated bibliography on guaranteed graph searching. Theor. Comput. Sci. 399, 236–245 (2008)MathSciNetMATHGoogle Scholar
  63. 63.
    F.V. Fomin, D. Kratsch, H. Müller, On the domination search number. Discret. Appl. Math. 127, 565–580 (2003)MATHGoogle Scholar
  64. 64.
    F.V. Fomin, P. Golovach, A. Hall, M. Mihalak, E. Vicari, P. Widmayer, How to guard a graph? in Proceedings of 15th International Symposium on Algorithms and Computation (ISAAC’08), Gold Coast, Australia, 2008Google Scholar
  65. 65.
    F.V. Fomin, P. Fraigniaud, N. Nisse, Nondeterministic graph searching: from pathwidth to treewidth. Algorithmica 53, 358–373 (2009)MathSciNetMATHGoogle Scholar
  66. 66.
    F.V. Fomin, P. Golovach, D. Lokshtanov, Guard games on graphs: keep the intruder Out, in Proceedings of the 7th International Workshop on Approximation and Online Algorithms (WAOA’09), Copenhagen, Denmark, 2010Google Scholar
  67. 67.
    F.V. Fomin, P.A. Golovach, J. Kratochvíl, N. Nisse, Pursuing fast robber in graphs. Theor. Comput. Sci. 411, 1167–1181 (2010)MATHGoogle Scholar
  68. 68.
    P. Frankl, Cops and robbers in graphs with large girth and Cayley graphs. Discret. Appl. Math. 17, 301–305 (1987)MathSciNetMATHGoogle Scholar
  69. 69.
    A. Frieze, M. Krivelevich, P. Loh, Variations on Cops and Robbers. J. Graph. Theor. 69, 383–402 (2012)MathSciNetMATHGoogle Scholar
  70. 70.
    R. Ganian, P. Hliněńy, J. Kneis, A. Langer, J. Obdržálek, P. Rossmanith, On digraph width measures in parameterized algorithmics, in Proceedings of the 4th International Workshop on Parameterized and Exact Computation (IWPEC 2009), Copenhagen, Denmark, 2009Google Scholar
  71. 71.
    S. Gaspers, M.E. Messinger, R. Nowakowski, P. Pralat, Clean the graph before you draw it. Inf. Process. Lett. 109, 463–467 (2009)MathSciNetMATHGoogle Scholar
  72. 72.
    A.S. Goldstein, E.M. Reingold, The complexity of pursuit on a graph. Theor. Comput. Sci. 143, 93–112 (1995)MathSciNetMATHGoogle Scholar
  73. 73.
    G. Gottlob, N. Leone, F. Scarcello, Robbers, marshals, and guards: game theoretic and logical characterizations of hypertree width. J. Comput. Syst. Sci. 66, 775–808 (2003)MathSciNetMATHGoogle Scholar
  74. 74.
    G. Hahn, Cops, robbers and graphs. Tatra Mt. Math. Publ. 36, 163–176 (2007)MathSciNetMATHGoogle Scholar
  75. 75.
    G. Hahn, G. MacGillivray, A characterization of k-cop-win graphs and digraphs. Discret. Math. 306, 2492–2497 (2006)MathSciNetMATHGoogle Scholar
  76. 76.
    G. Hahn, F. Laviolette, N. Sauer, R.E. Woodrow, On cop-win graphs. Discret. Math. 258, 27–41 (2002)MathSciNetMATHGoogle Scholar
  77. 77.
    D. Herscovici, Graham’s pebbling conjecture on products of cycles. J. Graph Theory 42, 141–154 (2003)MathSciNetMATHGoogle Scholar
  78. 78.
    J. Hopcroft, W. Paul, L. Valiant, On time versus space. J. ACM 24, 332–337 (1977)MathSciNetMATHGoogle Scholar
  79. 79.
    P. Hunter, Complexity and Infinite Games on Finite Graphs, Ph.D. thesis, University of Cambridge, Computer Laboratory, 2007Google Scholar
  80. 80.
    P. Hunter, S. Kreutzer, Digraph measures: Kelly decompositions, games, and orderings. Theor. Comput. Sci. 399, 206–219 (2008)MathSciNetMATHGoogle Scholar
  81. 81.
    A. Isaza, J. Lu, V. Bulitko, R. Greiner, A cover-based approach to multi-agent moving target pursuit, in Proceedings of the 4th Conference on Artificial Intelligence and Interactive Digital Entertainment, Stanford, CA, 2008Google Scholar
  82. 82.
    T. Johnson, N. Robertson, P. Seymour, R. Thomas, Directed tree-width. J. Comb. Theory Ser. B 82, 138–154 (2001)MathSciNetMATHGoogle Scholar
  83. 83.
    B. Kalyanasundaram, G. Schnitger, On the power of white pebbles, in Proceedings of the 20th Annual ACM Symposium on Theory of Computing, Chicago, IL, 1988Google Scholar
  84. 84.
    M. Kanté, The rank-width of directed graphs, Preprint 2013Google Scholar
  85. 85.
    K. Kara, J. Kratochvil, D. Wood, On the complexity of the balanced vertex ordering problem. Discret. Math. Theor. Comput. Sci. 9, 193–202 (2007)MathSciNetMATHGoogle Scholar
  86. 86.
    T. Kasai, A. Adachi, S. Iwata, Classes of pebble games and complete problems. SIAM J. Comput. 8, 574–586 (1979)MathSciNetMATHGoogle Scholar
  87. 87.
    N.G. Kinnersley, The vertex separation number of a graph equals its path-width. Inf. Process. Lett. 42, 345–350 (1992)MathSciNetMATHGoogle Scholar
  88. 88.
    L.M. Kirousis, C.H. Papadimitriou, Interval graphs and searching. Discret. Math. 55, 181–184 (1985)MathSciNetMATHGoogle Scholar
  89. 89.
    L.M. Kirousis, C.H. Papadimitriou, Searching and pebbling. Theor. Comput. Sci. 47, 205–216 (1986)MathSciNetMATHGoogle Scholar
  90. 90.
    M. Klawe, A tight bound for black and white pebbles on the pyramids. J. ACM 32, 218–228 (1985)MathSciNetMATHGoogle Scholar
  91. 91.
    S. Kreutzer, S. Ordyniak, Digraph decompositions and monotonicity in digraph searching, in Proceedings of the 34th International Workshop on Graph-Theoretic Concepts in Computer Science (WG’08), Durham, UK, 2008Google Scholar
  92. 92.
    S. Kreutzer, S. Ordyniak, Distance d-Domination Games, in Proceedings of the 35th International Workshop on Graph-Theoretic Concepts in Computer Science (WG’09), Montpellier, France, 2009Google Scholar
  93. 93.
    A.S. LaPaugh, Recontamination does not help to search a graph. J. ACM 40, 224–245 (1993)MathSciNetMATHGoogle Scholar
  94. 94.
    T. Lengauer, R. Tarjan, Asymptotically tight bounds on time-space trade-offs in a pebble game. J. ACM 29, 1087–1130 (1982)MathSciNetMATHGoogle Scholar
  95. 95.
    L. Lu, X. Peng, On Meyniel’s conjecture of the cop number. J. Graph. Theor. 71, 192–205 (2012)MathSciNetMATHGoogle Scholar
  96. 96.
    T. Łuczak, P. Prałat, Chasing robbers on random graphs: zigzag theorem. Random Struct. Algorithms 37, 516–524 (2010)MATHGoogle Scholar
  97. 97.
    F. Makedon, I. Sudborough, On minimizing width in linear layouts. Discret. Appl. Math. 23, 243–265 (1989)MathSciNetMATHGoogle Scholar
  98. 98.
    F. Makedon, C. Papadimitriou, I. Sudborough, Topological Bandwidth. SIAM J. Algebr. Discret. Methods 6, 418–444 (1985)MathSciNetMATHGoogle Scholar
  99. 99.
    F. Mazoit, N. Nisse, Monotonicity property of non-deterministic graph searching. Theor. Comput. Sci. 399, 169–178 (2008)MathSciNetMATHGoogle Scholar
  100. 100.
    N. Megiddo, S. L. Hakimi, M. Garey, D. Johnson, C.H. Papadimitriou, The complexity of searching a graph. J. ACM 35, 18–44 (1998)MathSciNetGoogle Scholar
  101. 101.
    M.E. Messinger, R.J. Nowakowski, P. Pralat, Cleaning a network with brushes. Theor. Comput. Sci. 399, 191–205 (2008)MathSciNetMATHGoogle Scholar
  102. 102.
    K. Milans, B. Clark, The complexity of graph pebbling. SIAM J. Discret. Math. 20, 769–798 (2006)MathSciNetMATHGoogle Scholar
  103. 103.
    D. Moews, Pebbling graphs. J. Comb. Theory Ser. B 55, 244–252 (1992)MathSciNetMATHGoogle Scholar
  104. 104.
    C. Moldenhauer, N. Sturtevant, Evaluating strategies for running from the cops, in Proceedings of IJCAI, Pasadena, CA, 2009Google Scholar
  105. 105.
    H. Nagamochi, Cop-robber guarding game with cycle robber region, in Proceedings of the 3rd International Frontiers of Algorithmics Workshop (FAW’09), Hefei, China, 2009Google Scholar
  106. 106.
    R. Nowakowski, Search and sweep numbers of finite directed acyclic graphs. Discret. Appl. Math. 41, 1–11 (1993)MathSciNetMATHGoogle Scholar
  107. 107.
    R.J. Nowakowski, P. Winkler, Vertex-to-vertex pursuit in a graph. Discret. Math. 43, 235–239 (1983)MathSciNetMATHGoogle Scholar
  108. 108.
    J. Obdržálek, DAG-width: connectivity measure for directed graphs, in Proceedings of the 17th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA’06), Miami, FL, 2006Google Scholar
  109. 109.
    T.D. Parsons, Pursuit-evasion in graphs, in Theory and Applications of Graphs, ed. by Y. Alavi, D.R. Lick (Springer, Berlin/New York, 1976), pp. 426–441Google Scholar
  110. 110.
    S. Peng, C. Ho, T. Hsu, M. Ko, C. Tang, Edge and node searching problems on trees. Theor. Comput. Sci. 240, 429–446 (2000)MathSciNetMATHGoogle Scholar
  111. 111.
    P. Prałat, When does a random graph have constant cop number? Australas. J. Comb. 46, 285–296 (2010)MATHGoogle Scholar
  112. 112.
    P. Prałat, N. Wormald, Meyniel’s conjecture holds in random graphs, Preprint 2013Google Scholar
  113. 113.
    A. Quilliot, Jeux et pointes fixes sur les graphes. Th èse de 3ème cycle, Université de Paris VI, 1978, pp. 131–145Google Scholar
  114. 114.
    A. Quilliot, A short note about pursuit games played on a graph with a given genus. J. Comb. Theory Ser. B 38, 89–92 (1985)MathSciNetMATHGoogle Scholar
  115. 115.
    B. Reed, Treewidth and tangles: a new connectivity measure and some applications, in Surveys in Combinatorics, ed. by R.A. Bailey (Cambridge University Press, Cambridge, 1997), pp. 87–162Google Scholar
  116. 116.
    D. Richerby, D. Thilikos, Graph searching in a crime wave. SIAM J. Discret. Math. 23, 349–368 (2009)MathSciNetMATHGoogle Scholar
  117. 117.
    N. Robertson, P. Seymour, Graph minors I: excluding a forest. J. Comb. Theory Ser. B 35, 39–61 (1983)MathSciNetMATHGoogle Scholar
  118. 118.
    N. Robertson, P. Seymour, Graph minors II: algorithmic aspects of tree-width. J. Algorithms 7, 309–322 (1986)MathSciNetMATHGoogle Scholar
  119. 119.
    M. Safari, D-width: a more natural measure for directed tree-width, in Proceedings of the 30th International Symposium on Mathematical Foundations of Computer Science (MFCS’05), Gdansk, Poland, 2005Google Scholar
  120. 120.
    B.S.W. Schroeder, The copnumber of a graph is bounded by \(\lfloor \frac{3} {2}\mathrm{genus}(G)\rfloor + 3,\) in Categorical Perspectives (Kent, OH, 1998). Trends Mathematics (Birkhäuser, Boston, 2001), pp. 243–263Google Scholar
  121. 121.
    A. Scott, B. Sudakov, A new bound for the cops and robbers problem. SIAM J. Discret. Math. 25, 1438–1442 (2011)MathSciNetMATHGoogle Scholar
  122. 122.
    P. Seymour, R. Thomas, Graph searching and a min-max theorem for tree-width. J. Comb. Theory Ser. B 58, 22–33 (1993)MathSciNetMATHGoogle Scholar
  123. 123.
    P. Seymour, R. Thomas, Call routing and the ratcatcher. Combinatorica 14, 217–241 (1994)MathSciNetMATHGoogle Scholar
  124. 124.
    N.J.A. Sloane, Sequences A000088 and A001349, The On-Line Encyclopedia of Integer Sequences published electronically at, 2011
  125. 125.
    M. Sipser, Introduction to the Theory of Computation, 2nd edn. (Thomson Course Technology, Boston, 2006)MATHGoogle Scholar
  126. 126.
    D. Stanley, B. Yang, Fast searching games on graphs. J. Comb. Optim. 22, 763–777 (2011)MathSciNetMATHGoogle Scholar
  127. 127.
    K. Sugihara, I. Suzuki, Optimal algorithms for a pursuit-evasion problem in grids. SIAM J. Discret. Math. 2, 126–143 (1989)MathSciNetMATHGoogle Scholar
  128. 128.
    K. Sugihara, I. Suzuki, M. Yamashita, The searchlight scheduling problem. SIAM J. Comput. 19, 1024–1040 (1990)MathSciNetMATHGoogle Scholar
  129. 129.
    I. Suzuki, M. Yamashita, Searching for a mobile intruder in a polygonal region. SIAM J. Comput. 21, 863–888 (1992)MathSciNetMATHGoogle Scholar
  130. 130.
    I. Suzuki, Y. Tazoe, M. Yamashita, T. Kameda, Searching a polygonal region from the boundary. Int. J. Comput. Geom. Appl. 11, 529–553 (2001)MathSciNetMATHGoogle Scholar
  131. 131.
    A. Takahashi, S. Ueno, Y. Kajitani, Minimal acyclic forbidden minors for the family of graphs with bounded path-width. Discret. Appl. Math. 127, 293–304 (1994)MathSciNetMATHGoogle Scholar
  132. 132.
    A. Takahashi, S. Ueno, Y. Kajitani, Mixed searching and proper-path-width. Theor. Comput. Sci. 137, 253–268 (1995)MathSciNetMATHGoogle Scholar
  133. 133.
    D.O. Theis, The cops and robber game on series-parallel graphs. Preprint 2013Google Scholar
  134. 134.
    D.B. West, Introduction to Graph Theory, 2nd ed. (Prentice Hall, Upper Saddle River, 2001)Google Scholar
  135. 135.
    B. Yang, Strong-mixed searching and pathwidth. J. Comb. Optim. 13, 47–59 (2007)MathSciNetMATHGoogle Scholar
  136. 136.
    B. Yang, Fast edge-searching and fast searching on graphs. Theor. Comput. Sci. 412, 1208–1219 (2011)MATHGoogle Scholar
  137. 137.
    B. Yang, Y. Cao, Monotonicity of strong searching on digraphs. J. Comb. Optim. 14, 411–425 (2007)MathSciNetMATHGoogle Scholar
  138. 138.
    B. Yang, Y. Cao, Monotonicity in digraph search problems. Theor. Comput. Sci. 407, 532–544 (2008)MathSciNetMATHGoogle Scholar
  139. 139.
    B. Yang, Y. Cao, On the monotonicity of weak searching, in Proceedings of the 14th International Computing and Combinatorics Conference (COCOON’08), Dalian, China, 2008Google Scholar
  140. 140.
    B. Yang, Y. Cao, Digraph searching, directed vertex separation and directed pathwidth. Discret. Appl. Math. 156, 1822–1837 (2008)MathSciNetMATHGoogle Scholar
  141. 141.
    B. Yang, D. Dyer, B. Alspach, Sweeping graphs with large clique number (extended abstract), in Proceedings of 15th International Symposium on Algorithms and Computation (ISAAC’04), HongKong, China, 2004Google Scholar
  142. 142.
    B. Yang, R. Zhang, Y. Cao, Searching cycle-disjoint graphs, in Proceedings of the 1st International Conference on Combinatorial Optimization and Applications (COCOA’07), Xi’an, China. Lecture Notes in Computer Science, vol. 4616, 2007, pp. 32–43Google Scholar
  143. 143.
    B. Yang, D. Dyer, B. Alspach, Sweeping graphs with large clique number. Discret. Math. 309, 5770–5780 (2009)MathSciNetMATHGoogle Scholar
  144. 144.
    Ö. Yaşar, D. Dyer, D. Pike, M. Kondratieva, Edge searching weighted graphs. Discret. Appl. Math. 157, 1913–1923 (2009)MATHGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.Department of MathematicsRyerson UniversityTorontoON, Canada
  2. 2.Department of Computer ScienceUniversity of ReginaReginaSK, Canada

Personalised recommendations