Modern Network Interdiction Problems and Algorithms

Reference work entry


A network interdiction problem usually involves two players who compete in a min–max or max–min game. One player, the network owner, tries to optimize its objective over the network, for example, as measured by a shortest path, maximum flow, or minimum cost flow. The opposing player, called the interdictor, alters the owner’s network to maximally impair the owner’s objective (e.g., by destroying arcs that maximize the owner’s shortest path). This chapter summarizes the impressive recent development of this field. The first part of this chapter emphasizes interdiction foundations, applications, and emerging research areas. The links between this field and business competition models are then developed, followed by a comparison of interdiction research with parallel developments in robust optimization and survivable network design.


Supply Chain Robust Optimization Master Problem Demand Point Stackelberg Game 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Recommended Reading

  1. 1.
    R.K. Ahuja, T.L. Magnanti, J.B. Orlin, Network Flows: Theory, Algorithms, and Applications (Prentice Hall, Upper Saddle River, 1993)MATHGoogle Scholar
  2. 2.
    A. Atamtürk, M. Zhang, Two-stage robust network flow and design under demand uncertainty. Oper. Res. 55(4), 662–673 (2007)MathSciNetCrossRefMATHGoogle Scholar
  3. 3.
    H. Bayrak, M.D. Bailey, Shortest path network interdiction with asymmetric information. Networks 52(3), 133–140 (2008)MathSciNetCrossRefMATHGoogle Scholar
  4. 4.
    M.S. Bazaraa, J.J. Jarvis, H.D. Sherali, Linear Programming and Network Flows, 2nd edn. (Wiley, New York, 1990)MATHGoogle Scholar
  5. 5.
    G. Belvaux, N. Boissin, A. Sutter, L.A. Wolsey, Optimal placement of add/drop multiplexers: static and dynamic models. Eur. J. Oper. Res. 108, 26–35 (1998)CrossRefMATHGoogle Scholar
  6. 6.
    A. Ben-Tal, L. El-Ghaoui, A. Nemirovski, Robust Optimization (Princeton University Press, Princeton, 2009)MATHGoogle Scholar
  7. 7.
    A. Ben-Tal, A. Nemirovski, Stable truss topology design via semidefinite programming. SIAM J. Optim. 7, 991–1016 (1997)MathSciNetCrossRefMATHGoogle Scholar
  8. 8.
    A. Ben-Tal, A. Nemirovski, Robust convex optimization. Math. Oper. Res. 23, 769–805 (1998)MathSciNetCrossRefMATHGoogle Scholar
  9. 9.
    A. Ben-Tal, A. Nemirovski, Robust solutions to uncertain linear programs. Oper. Res. Lett. 25, 1–13 (1999)MathSciNetCrossRefMATHGoogle Scholar
  10. 10.
    A. Ben-Tal, A. Nemirovski, Robust solutions of linear programming problems contaminated with uncertain data. Math. Program. 88(3), 411–424 (2000)MathSciNetCrossRefMATHGoogle Scholar
  11. 11.
    A. Ben-Tal, A. Nemirovski, Robust optimization – methodology and applications. Math. Program. Ser. B 92, 453–480 (2002)MathSciNetCrossRefMATHGoogle Scholar
  12. 12.
    D. Bertsimas, M. Sim, The price of robustness. Oper. Res. 52(1), 35–53 (2004)MathSciNetCrossRefMATHGoogle Scholar
  13. 13.
    D. Bertsimas, A. Thiele, Robust and data-driven optimization: Modern decision-making under uncertainty, in Tutorials in Operations Research: Models, Methods, and Applications for Innovative Decision Making, ed. by M.P. Johnson, B. Norman, N. Secomandi. INFORMS, 2006, pp. 95–122Google Scholar
  14. 14.
    D. Bertsimas, A. Thiele, A robust optimization approach to inventory theory. Oper. Res. 54(1), 150–168 (2006)MathSciNetCrossRefMATHGoogle Scholar
  15. 15.
    J.R. Birge, F.V. Louveaux, Introduction to Stochastic Programming (Springer, New York, 1997)MATHGoogle Scholar
  16. 16.
    G.G. Brown, W.M. Carlyle, J. Salmerón, K. Wood, Analyzing the vulnerability of critical infrastructure to attack and planning defenses, in Tutorials in Operations Research: Emerging Theory, Methods, and Applications, ed. by H.J. Greenberg, J.C. Smith. INFORMS, Hanover, 2005, pp. 102–123Google Scholar
  17. 17.
    G.G. Brown, W.M. Carlyle, J. Salmerón, K. Wood, Defending critical infrastructure. Interfaces 36(6), 530–544 (2006)CrossRefGoogle Scholar
  18. 18.
    S.D. Cartwright, Supply chain interdiction and corporate warfare. J. Bus. Strat. 21(2), 30–35 (2000)CrossRefGoogle Scholar
  19. 19.
    R.L. Church, M.P. Scaparra, The r-interdiction median problem with fortification. Geogr. Anal. 39, 129–146 (2007)CrossRefGoogle Scholar
  20. 20.
    R.L. Church, M.P. Scaparra, R. Middleton, Identifying critical infrastructure: The median and covering interdiction models. Ann. Assoc. Am. Geogr. 94(3), 491–502 (2004)CrossRefGoogle Scholar
  21. 21.
    K.J. Cormican, D.P. Morton, R.K. Wood, Stochastic network interdiction. Oper. Res. 46(2), 184–197 (1998)CrossRefMATHGoogle Scholar
  22. 22.
    G. Dahl, M. Stoer, A cutting plane algorithm for multicommodity survivable network design problems. INFORMS J. Comput. 10(1), 1–11 (1998)MathSciNetCrossRefGoogle Scholar
  23. 23.
    A. Delgadillo, J.M. Arroyo, N. Alguacil, Analysis of electric grid interdiction with line switching. IEEE Trans. Power Syst. 25(2), 633–641 (2010)CrossRefGoogle Scholar
  24. 24.
    H.A. Eiselt, G. Laporte, J.-F. Thisse, Competitive location models: A framework and bibliography. Transport. Sci. 27(1), 44–54 (1993)CrossRefMATHGoogle Scholar
  25. 25.
    L. El-Ghaoui, H. Lebret, Robust solutions to least-square problems with uncertain data matrices. SIAM J. Matrix Anal. Appl. 18, 1035–1064 (1997)MathSciNetCrossRefMATHGoogle Scholar
  26. 26.
    L. El-Ghaoui, F. Oustry, H. Lebret, Robust solutions to uncertain semidefinite programs. SIAM J. Optim. 9, 33–52 (1998)MathSciNetCrossRefMATHGoogle Scholar
  27. 27.
    M. Garg, J.C. Smith, Models and algorithms for the design of survivable multicommodity flow networks with general failure scenarios. Omega 36(6), 1057–1071 (2008)CrossRefGoogle Scholar
  28. 28.
    O. Goldschmidt, D.S. Hochbaum, A. Levin, E.V. Olinick, The SONET edge-partition problem. Networks 41(1), 13–23 (2003)MathSciNetCrossRefMATHGoogle Scholar
  29. 29.
    O. Goldschmidt, A. Laugier, E.V. Olinick, SONET/SDH ring assignment with capacity constraints. Discrete Appl. Math. 129(1), 99–128 (2003)MathSciNetCrossRefMATHGoogle Scholar
  30. 30.
    M. Grötschel, C.L. Monma, Integer polyhedra arising from certain network design problems with connectivity constraints. SIAM J. Discrete Math. 3(4), 502–523 (1990)MathSciNetCrossRefMATHGoogle Scholar
  31. 31.
    M. Grötschel, C.L. Monma, M. Stoer, Polyhedral and computational investigations for designing communication networks with high survivability requirements. Oper. Res. 43(6), 1012–1024 (1995)MathSciNetCrossRefMATHGoogle Scholar
  32. 32.
    H. Hotelling, Stability in competition. Econ. J. 39(153), 41–57 (1929)CrossRefGoogle Scholar
  33. 33.
    M. Iri, Extension of the maximum-flow minimum-cut theorem to multicommodity flows. J. Oper. Res. Soc. Jpn. 13(3), 129–135 (1971)MathSciNetMATHGoogle Scholar
  34. 34.
    U. Janjarassuk, J. Linderoth, Reformulation and sampling to solve a stochastic network interdiction problem. Networks 52(3), 120–132 (2008)MathSciNetCrossRefMATHGoogle Scholar
  35. 35.
    P. Kall, S.W. Wallace, Stochastic Programming (Wiley, Chichester, 1994)MATHGoogle Scholar
  36. 36.
    P. Kotler, R. Singh, Marketing warfare in the 1980s. J. Bus. Strat. 1(3), 30–41 (1980)Google Scholar
  37. 37.
    P. Kouvelis, G. Yu, Robust Discrete Optimization and Its Applications (Kluwer Academic, Norwell, 1997)CrossRefMATHGoogle Scholar
  38. 38.
    Y. Lee, H.D. Sherali, J. Han, S. Kim, A branch-and-cut algorithm for solving an intra-ring synchronous optical network design problem. Networks 35(3), 223–232 (2000)MathSciNetCrossRefMATHGoogle Scholar
  39. 39.
    A. Malaviya, C. Rainwater, T. Sharkey, Multi-period network interdiction models with applications to city-level drug enforcement. Working paper, Department of Industrial and Systems Engineering, Rensselaer Polytechnic Institute, Troy, 2011Google Scholar
  40. 40.
    D.P. Morton, F. Pan, K.J. Saeger, Models for nuclear smuggling interdiction. IIE Trans. 39(1), 3–14 (2007)CrossRefGoogle Scholar
  41. 41.
    D.P. Morton, F. Pan, J.C. Smith, K. Sullivan, Inequalities for an asymmetric stochastic network interdiction problem. Technical report, Department of Industrial and Systems Engineering, University of Florida, Gainesville, 2011Google Scholar
  42. 42.
    A. Nemirovski, Lectures on robust convex optimization.
  43. 43.
    F. Pan, W. Charlton, D.P. Morton, Interdicting smuggled nuclear material, in Network Interdiction and Stochastic Integer Programming, ed. by D.L. Woodruff (Kluwer Academic, Boston), 2003, pp. 1–20Google Scholar
  44. 44.
    F. Pan, D.P. Morton, Minimizing a stochastic maximum-reliability path. Networks 52, 111–119 (2008)MathSciNetCrossRefMATHGoogle Scholar
  45. 45.
    M. Parlar, Game theoretic analysis of the substitutable product inventory problem with random demands. Nav. Res. Logist. 35(3), 397–409 (1988)MathSciNetCrossRefMATHGoogle Scholar
  46. 46.
    A.E. Pearson, C.L. Irwin, Coca-Cola vs. Pepsi-Cola (A). Case study, Harvard Business School Case No. 9-387-108, Cambridge, 1988Google Scholar
  47. 47.
    F. Plastria, Static competitive facility location: An overview of optimisation approaches. Eur. J. Oper. Res. 129(3), 461–470 (2001)MathSciNetCrossRefMATHGoogle Scholar
  48. 48.
    M. Prince, J.C. Smith, J. Geunes, Optimizing exclusivity agreements in a three-stage procurement game. Working paper, Department of Industrial and Systems Engineering, The University of Florida, Gainesville, 2011Google Scholar
  49. 49.
    C.M. Rocco, J.E. Ramirez-Marquez, A bi-objective approach for shortest-path network interdiction. Comput. Ind. Eng. 59, 232–240 (2010)CrossRefGoogle Scholar
  50. 50.
    J.O. Royset, R.K. Wood, Solving the bi-objective maximum-flow network-interdiction problem. INFORMS J. Comput. 19, 175–184 (2007)MathSciNetCrossRefMATHGoogle Scholar
  51. 51.
    J. Salmerón, K. Wood, R. Baldick, Analysis of electric grid security under terrorist threat. IEEE Trans. Power Syst. 19, 905–912 (2004)CrossRefGoogle Scholar
  52. 52.
    J. Salmerón, K. Wood, R. Baldick, Worst-case interdiction analysis of large-scale electric power grids. IEEE Trans. Power Syst. 24, 96–104 (2009)CrossRefGoogle Scholar
  53. 53.
    M.P. Scaparra, R.L. Church, A bilevel mixed-integer program for critical infrastructure protection planning. Comput. Oper. Res. 35(6), 1905–1923 (2008)CrossRefMATHGoogle Scholar
  54. 54.
    H.D. Sherali, J.C. Smith, Y. Lee, Enhanced model representations for an intra-ring synchronous optical network design problem allowing demand splitting. INFORMS J. Comput. 12(4), 284–298 (2000)CrossRefMATHGoogle Scholar
  55. 55.
    J.C. Smith, Basic interdiction models, in Wiley Encyclopedia of Operations Research and Management Science, ed. by J. Cochran (Wiley, Hoboken, 2011)Google Scholar
  56. 56.
    J.C. Smith, S. Ahmed, Introduction to robust optimization, in Wiley Encyclopedia of Operations Research and Management Science, ed. by J. Cochran (Wiley, Hoboken, 2011)Google Scholar
  57. 57.
    J.C. Smith, C. Lim, Algorithms for network interdiction and fortification games, in Pareto Optimality, Game Theory and Equilibria, ed. by A. Migdalas, P.M. Pardalos, L. Pitsoulis, A. Chinchuluun, Nonconvex Optimization and Its Applications Series (Springer, New York, 2008), pp. 609–644Google Scholar
  58. 58.
    J.C. Smith, C. Lim, A. Alptekinoğlu, New product introduction against a predator: A bilevel mixed-integer programming approach. Nav. Res. Logist. 56, 714–729 (2009)CrossRefMATHGoogle Scholar
  59. 59.
    J.C. Smith, C. Lim, F. Sudargho, Survivable network design under optimal and heuristic interdiction scenarios. J. Global Optim. 38, 181–199 (2007)MathSciNetCrossRefMATHGoogle Scholar
  60. 60.
    J.C. Smith, A.J. Schaefer, J.W. Yen, A stochastic integer programming approach to solving a synchronous optical network ring design problem. Networks 44(1), 12–26 (2004)MathSciNetCrossRefMATHGoogle Scholar
  61. 61.
    L.V. Snyder, M.P. Scaparra, M.S. Daskin, R.L. Church, Planning for disruptions in supply chain networks, in Tutorials in Operations Research: Models, Methods, and Applications for Innovative Decision Making, ed. by M.P. Johnson, B. Norman, N. Secomandi. (INFORMS, 2006), pp. 234–257Google Scholar
  62. 62.
    A.L. Soyster, Convex programming with set-inclusive constraints and applications to inexact linear programming. Oper. Res. 21, 1154–1157 (1973)MathSciNetCrossRefMATHGoogle Scholar
  63. 63.
    M. Stoer, G. Dahl, A polyhedral approach to multicommodity survivable network design. Numer. Math. 68(1), 149–167 (1994)MathSciNetCrossRefMATHGoogle Scholar
  64. 64.
    A. Sutter, F. Vanderbeck, L.A. Wolsey, Optimal placement of add/drop multiplexers: heuristic and exact algorithms. Oper. Res. 46(5), 719–728 (1998)CrossRefMATHGoogle Scholar
  65. 65.
    H. von Stackelberg, The Theory of the Market Economy (William Hodge, London, 1952)Google Scholar
  66. 66.
    T.-H. Wu, Fiber Network Service Survivability (Artech House, Boston, MA, 1992)Google Scholar
  67. 67.
    T.-H. Wu, M.E. Burrowes, Feasibility study of a high-speed SONET self-healing ring architecture in future interoffice networks. IEEE Comm. Mag. 28(11), 33–43 (1990)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.Department of Industrial and Systems EngineeringUniversity of FloridaGainesvilleFL, USA

Personalised recommendations