Skip to main content

Map of Geometric Minimal Cuts with Applications*

  • Reference work entry
  • First Online:
Book cover Handbook of Combinatorial Optimization

Abstract

This chapter considers the following problem of computing a map of geometric minimal cuts (called the MGMC problem): Given a graph G = (V, E) and a planar embedding of a subgraph \(H = (V _{H},E_{H})\) of G, compute the map of geometric minimal cuts induced by axis-aligned rectangles in the embedding plane. The MGMC problem is motivated by the critical area extraction problem in VLSI designs and finds applications in several other fields. This chapter surveys two different approaches for the MGMC problem based on a mix of geometric and graph algorithm techniques that can be regarded complementary. It is first shown that unlike the classic min-cut problem on graphs, the number of all rectilinear geometric minimal cuts is bounded by a low polynomial, O(n 3). Based on this observation, the first approach enumerates all rectilinear geometric minimal cuts and computes their \(L_{\infty }\) Hausdorff Voronoi diagram, which is equivalent to the \(L_{\infty }\) Hausdorff Voronoi diagram of axis-aligned rectangles. The second approach is based on higher-order Voronoi diagrams and identifies necessary geometric minimal cuts and their Hausdorff Voronoi diagram in an iterative manner. The embedding in the latter approach includes arbitrary polygons. This chapter also presents the structural properties of the \(L_{\infty }\) Hausdorff Voronoi diagram of rectangles that provides the map of the MGMC problem and plane sweep algorithms for its construction.

*The work of the first author was supported in part by the Swiss National Science Foundation SNSF project 200021-127137. The work of the last two authors was supported in part by NSF through a CAREER Award CCF-0546509 and two grants IIS-0713489 and IIS-1115220.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 3,400.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    A map means a partition of the embedding plane (as in a trapezoidal map) into cells so that all points in the same cell share the same “closest” geometric minimal cut.

  2. 2.

    The generator of a cut is a portion of the farthest Voronoi diagram of the elements constituting the cut.

  3. 3.

    A 45 ray is a ray of slope ± 1.

  4. 4.

    A biconnected component of a graph G is a maximal set of edges, such that any two edges in the set lie on a common simple cycle.

  5. 5.

    An articulation point (resp. bridge) of a graph G is a vertex (resp. edge) whose removal disconnects G.

  6. 6.

    The (directed) Hausdorff distance from a set A to a set B is \(h(A,B) =\max _{a\in A}\min _{b\in B}\{d(a,b)\}\). The (undirected) Hausdorff distance between A and B is \(d_{h}(A,B) =\max \{ h(A,B),h(B,A)\}\).

Recommended Reading

  1. M. Abellanas, G. Hernandez, R. Klein, V. Neumann-Lara, J. Urrutia, A combinatorial property of convex sets. Discret. Comput. Geom. 17, 307–318 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  2. E. Aurenhammer, Voronoi diagrams – a survey of a fundamental data structure. ACM Comput. Surv. 23(3), 345–405 (1991)

    Article  Google Scholar 

  3. F. Aurenhammer, R. Klein, Voronoi diagrams, in Handbook of Computational Geometry, ed. by J. Sack, G. Urrutia (Elsevier, Amsterdam, 2000), pp. 201–290

    Chapter  Google Scholar 

  4. F. Aurenhammer, R. Drysdale, H. Krasser, Farthest line segment Voronoi diagrams. Inf. Process. Lett. 100, 220–225 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  5. S.C. Braasch, J. Hibbeler, D. Maynard, M. Koshy, R. Ruehl, D. White, Model-based verification and analysis for 65/45nm physical design, CDNLive! September 2007

    Google Scholar 

  6. M. de Berg, O. Schwarzkopf, M. van Kreveld, M. Overmars, Computational Geometry: Algorithms and Applications, 2nd edn. (Springer, Berlin/New York, 2000)

    Book  Google Scholar 

  7. J.P. de Gyvez, C. Di, IC defect sensitivity for footprint-type spot defects. IEEE Trans. Comput. Aided Des. 11, 638–658 (1992)

    Article  Google Scholar 

  8. F. Dehne, R. Klein, “The big sweep”: on the power of the wavefront approach to Voronoi diagrams. Algorithmica 17, 19–32 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  9. F. Dehne, A. Maheshwari, R. Taylor, A coarse grained parallel algorithm for Hausdorff Voronoi diagrams, in Proceedings of the 2006 International Conference on Parallel Processing, Columbus (2006), pp. 497–504

    Google Scholar 

  10. J.R. Driscoll, N. Sarnak, D. Sleator, R. Tarjan, Making data structures persistent, in STOC, Berkeley, CA (1986), pp. 109–121

    Google Scholar 

  11. H. Edelsbrunner, L.J. Guibas, M. Sharir, The upper envelope of piecewise linear functions: algorithms and applications. Discret. Comput. Geom. 4, 311–336 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  12. D. Eppstein, Z. Galil, G.F. Italiano, A. Nissenzweig, Sparsification – a technique for speeding up dynamic graph algorithms. J. ACM 44(5), 669–696 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  13. G.N. Frederickson, Data structures for on-line updating of minimum spanning trees, with applications. SIAM J. Comput. 14(4), 781–798 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  14. M. Fredman, M. Henzinger, Lower bounds for fully dynamic connectivity problems in graphs. Algorithmica 22(3), 351–362 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  15. S. Fortune, A sweepline algorithm for Voronoi diagrams. Algorithmica 2, 153–174 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  16. P. Gupta, E. Papadopoulou, Yield analysis and optimization, in The Handbook of Algorithms for VLSI Physical Design Automation, ed. by C.J. Alpert, D.P. Mehta, S.S. Sapatnekar (Taylor & Francis/CRC, London, 2008)

    Google Scholar 

  17. M.R. Henzinger, M. Thorup, Sampling to provide or to bound: with applications to fully dynamic graph algorithms. Random Struct. Algorithm 11, 369–379 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  18. M.R. Henzinger, V. King, Randomized dynamic graph algorithms with polylogarithmic time per operation, in Proceedings of the 27th STOC, Las Vegas (1995), pp. 519–527

    Google Scholar 

  19. J. Holm, K. de Lichtenberg, M. Thorup, Polylogarithmic deterministic fully-dynamic algorithms for connectivity, minimum spanning tree, 2-edge, and biconnectivity, in Proceedings of the 30th STOC, Dallas, TX (1998), pp. 79–89

    Google Scholar 

  20. J. Holm, K. Lichtenberg, M. Thorup, Poly-logarithmic deterministic fully-dynamic algorithms for connectivity, minimum spanning tree, 2-edge, and biconnectivity. J. ACM 48(4), 723–760 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  21. J. Hopcroft, R. Tarjan, Efficient algorithms for graph manipulation. Commun. ACM 16(6), 372–378 (1973)

    Article  Google Scholar 

  22. A.B. Kahng, B. Liu, I.I. Mandoiu, Non-tree routing for reliability and yield improvement. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 23(1), 148–156 (2004)

    Article  Google Scholar 

  23. R. Klein, Concrete and Abstract Voronoi Diagrams. Lecture Notes in Computer Science, vol. 400 (Springer, Berlin/New York, 1989)

    Book  MATH  Google Scholar 

  24. R. Klein, K. Mehlhorn, S. Meiser, Randomized incremental construction of abstract Voronoi diagram. Comput. Geom. 3, 157–184 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  25. R. Klein, E. Langetepe, Z. Nilforoushan, Abstract Voronoi diagrams revisited. Comput. Geom. 42(9), 885–902 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  26. D.T. Lee, On k-nearest neighbor Voronoi diagrams in the plane. IEEE Trans. Comput. C-31, 478–487 (1982)

    Article  Google Scholar 

  27. W. Maly, J. Deszczka, Yield estimation model for VLSI artwork evaluation. Electron Lett. 19(6), 226–227 (1983)

    Article  Google Scholar 

  28. E.M. McCreight, Priority search trees. SIAM J. Comput. 14, 257–276 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  29. K. Mehlhorn, S. Näher, Dynamic fractional cascading. Algorithmica 5, 215–241 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  30. P.B. Miltersen, S. Subramanian, J.S. Vitter, R. Tamassia, Complexity models for incremental computation. Theor. Comput. Sci. 130(1), 203–236 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  31. Y. Nakamura, S. ABE, Y. Ohsawa, M. Sakauchi, MD-tree: a balanced hierarchical data structure for multi-dimensional data with highly efficient dynamic characteristics. IEEE Trans. Knowl. Data Eng. 5(4), 682–694 (1993)

    Article  Google Scholar 

  32. E. Papadopoulou, Critical area computation for missing material defects in VLSI circuits. IEEE Trans. Comput. Aided Des. 20(5), 583–597 (2001)

    Article  Google Scholar 

  33. E. Papadopoulou, The Hausdorff Voronoi diagram of point clusters in the plane. Algorithmica 40, 63–82 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  34. E. Papadopoulou, Net-aware critical area extraction for opens in VLSI circuits via higher-order Voronoi diagrams. IEEE Trans. Comput. Aided Des. 30(5), 704–716 (2011). Preliminary version in ISAAC’07. Lecture Notes in Computer Science, vol. 4835 (2007), pp. 716–727

    Article  Google Scholar 

  35. E. Papadopoulou, D.T. Lee, Critical area computation via Voronoi diagrams. IEEE Trans. Comput. Aided Des. 18(4), 463–474 (1999)

    Article  Google Scholar 

  36. E. Papadopoulou, D.T. Lee, The \(L_{\infty }\) Voronoi diagram of segments and VLSI applications. Int. J. Comput. Geom. Appl. 11, 503–528 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  37. E. Papadopoulou, D.T. Lee, The min-max Voronoi diagram of polygonal objects and applications in VLSI manufacturing, in Proceedings of the 13th International Symposium on Algorithms and Computation, Vancouver, BC. Lecture Notes in Computer Science, vol. 2518, (2002), pp. 511–522

    Google Scholar 

  38. E. Papadopoulou, D.T. Lee, The Hausdorff Voronoi diagram of polygonal objects: a divide and conquer approach. Int. J. Comput. Geom. Appl. 14(6), 421–452 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  39. E. Papadopoulou, J. Xu, The \(L_{\infty }\) Hausdorff Voronoi diagram revisited, in IEEE-CS Proceedings, ISVD 2011, International Symposium on Voronoi Diagrams in Science and Engineering, Qingdao (2011)

    Google Scholar 

  40. F.P. Preparata, M.I. Shamos, Computational Geometry: An Introduction (Springer, New York, 1985)

    Book  Google Scholar 

  41. D. Sleator, R. Tarjan, A data structure for dynamic trees. J. Comput. Syst. Sce. 26(3), 362–391 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  42. R. Tarjan, Depth-first search and linear graph algorithms. SIAM J. Comput. 1, 146–160 (1972)

    Article  MathSciNet  MATH  Google Scholar 

  43. R.E. Tarjan, Efficiency of a good but not linear set union algorithms. J. ACM 22, 215–225 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  44. M. Thorup, Decremental dynamic connectivity, in Proceedings of the 8th SODA, New Orleans (1997), pp. 305–313

    Google Scholar 

  45. M. Thorup, Near-optimal fully-dynamic graph connectivity, in STOC, Portland (2000), pp. 343–350

    Google Scholar 

  46. “Voronoi CAA: Voronoi Critical Area Analysis”, IBM CAD Tool, Department of Electronic Design Automation, IBM Microelectronics, Burlington, VT. Initial patents: US6178539, US6317859. Distributed by Cadence

    Google Scholar 

  47. J. Xu, L. Xu, E. Papadopoulou, Computing the map of geometric minimal cuts, in Proceedings of the 20th International Symposium on Algorithms and Computation (ISAAC 2009), Hawaii, USA. Lecture Notes in Computer Science, vol. 5878, 16–18 Dec 2009, pp. 244–254

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Evanthia Papadopoulou , Jinhui Xu or Lei Xu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this entry

Cite this entry

Papadopoulou, E., Xu, J., Xu, L. (2013). Map of Geometric Minimal Cuts with Applications* . In: Pardalos, P., Du, DZ., Graham, R. (eds) Handbook of Combinatorial Optimization. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-7997-1_27

Download citation

Publish with us

Policies and ethics