Skip to main content

A Unified Approach for Domination Problems on Different Network Topologies

  • Reference work entry
  • First Online:
Handbook of Combinatorial Optimization

Abstract

This chapter studies approximability and inapproximability for a class of important domination problems in different network topologies. In addition to the well-known connected dominating set, total dominating set, more general forms of the problems, in which each node is required to be dominated by more than one of its neighbors, are also considered. An example is the positive influence dominating set (PIDS) problem, originated from the context of influence propagation in social networks. The PIDS problem seeks for a minimal set of nodes P such that all other nodes in the network have at least a fraction \(\rho>0\) of their neighbors in P. Furthermore, domination problems can be hybridized to form new problems such as T-PIDS and C-PIDS, the total version and the connected version of PIDS. The goal of the chapter is to narrow the gaps between the approximability and inapproximability of those domination problems. Going beyond the classic \(O(\log n)\) results, the chapter presents the explicit constants in the approximation factors to obtain tighter approximation bounds. While the first part of the chapter focuses on the general topology, the second part presents improved approximation results in different network topologies including power-law networks, social networks, and treelike networks.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 3,400.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Under the typical assumption that P \(\neq\) NP, the best known inapproximability result is \(c \cdot \ln n\) [15] for some constant c > 0.

References

  1. T.W. Haynes, S.T. Hedetniemi, P.J. Slater, Fundamentals of Domination in Graphs. Monographs and Textbooks in Pure and Applied Mathematics (Marcel Dekker, New York, 1998)

    MATH  Google Scholar 

  2. S. Ivan, Dominating set based bluetooth scatternet formation with localized maintenance. Parallel and Distributed Processing Symposium, International (IEEE Computer Society, Washington, DC, 2002)

    Google Scholar 

  3. T. Moscibroda, R. Wattenhofer, Maximizing the lifetime of dominating sets, in IEEE International Parallel and Distributed Processing Symposium ’05, IPDPS ’05, Washington, DC, USA (IEEE Computer Society, Washington, DC, 2005)

    Google Scholar 

  4. J. Blum, M. Ding, A. Thaeler, X. Cheng, Connected dominating set in sensor networks and manets, in Handbook of Combinatorial Optimization, ed. by D.-Z. Du, P.M. Pardalos (Springer, New York, 2005), pp. 329–369

    Chapter  Google Scholar 

  5. M.T. Thai, F. Wang, D. Liu, S. Zhu, D.-Z. Du, Connected dominating sets in wireless networks with different transmission ranges. IEEE Trans. Mob. Comput. 6(7), 721–730 (2007)

    Article  Google Scholar 

  6. M.T. Thai, R. Tiwari, D.-Z. Du, On construction of virtual backbone in wireless ad hoc networks with unidirectional links. IEEE Trans. Mob. Comput. 7(9), 1098–1109 (2008)

    Article  Google Scholar 

  7. R. Tiwari, T.N. Dinh, M.T. Thai, On approximation algorithms for interference-aware broadcast scheduling in 2d and 3d wireless sensor networks, in International Conference on Wireless Algorithms, Systems, and Applications ’09, WASA ’09 (Springer, Berlin/Heidelberg, 2009)

    Google Scholar 

  8. R. Tiwari, T.N. Dinh, M.T. Thai, On centralized and localized approximation algorithms for interference-aware broadcast scheduling. IEEE Trans. Mob. Comput. 12(2), 233–247 (2013)

    Article  Google Scholar 

  9. F. Wang, M.T. Thai, D.-Z. Du, On the construction of 2-connected virtual backbone in wireless networks. IEEE Trans. Wirel. Commun. 8(3), 1230–1237 (2009)

    Article  Google Scholar 

  10. F. Wang, E. Camacho, K. Xu, Positive influence dominating set in online social networks, in Proceedings of the 3rd International Conference on Combinatorial Optimization and Applications, COCOA ’09 (Springer, Berlin, Heidelberg, 2009), pp. 313–321

    Google Scholar 

  11. X. Zhu, J. Yu, W. Lee, D. Kim, S. Shan, D.-Z. Du, New dominating sets in social networks. J. Global Optim. 48, 633–642 (2010). doi:10.1007/s10898-009-9511-2.

    Article  MathSciNet  MATH  Google Scholar 

  12. F. Wang, H. Du, E. Camacho, K. Xu, W. Lee, Y. Shi, S. Shan, On positive influence dominating sets in social networks. Theor. Comput. Sci. 412(3), 265–269 (2011). Combinatorial Optimization and Applications – COCOA 2009

    Article  MathSciNet  MATH  Google Scholar 

  13. U. Feige, A threshold of ln n for approximating set cover. J. ACM 45(4), 634–652 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  14. P. Slavík, A tight analysis of the greedy algorithm for set cover, in Proceedings of the twenty-eighth annual ACM symposium on Theory of computing, STOC ’96 (ACM, New York, 1996), pp. 435–441

    Google Scholar 

  15. N. Alon, D. Moshkovitz, S. Safra, Algorithmic construction of sets for k-restrictions. ACM Trans. Algorithms 2(2), 153–177 (2006)

    Article  MathSciNet  Google Scholar 

  16. Z. Feng, Z. Zhao, W. Weili, Latency-bounded minimum influential node selection in social networks, in Wireless Algorithms, Systems, and Applications, ed. by B. Liu, A. Bestavros, D.-Z. Du, J. Wang. Lecture Notes in Computer Science (Springer, Berlin/New York, 2009), pp. 519–526

    Google Scholar 

  17. S. Guha, S. Khuller, Approximation algorithms for connected dominating sets. Algorithmica 20, 374–387 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  18. V.V. Vazirani, Approximation algorithms (Springer, Berlin/New York, 2001)

    Google Scholar 

  19. C. Liao, G.J. Chang, Algorithmic aspect of k-tuple domination in graphs. Taiwan. J. Math. 6, 415–420 (2003)

    MathSciNet  Google Scholar 

  20. R. Klasing, C. Laforest, Hardness results and approximation algorithms of k-tuple domination in graphs. Inf. Process. Lett. 89, 75–83 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  21. B. Wang, K.-N. Xiang, On k-tuple domination of random graphs. Appl. Math. Lett. 22(10), 1513–1517 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  22. W. Shang, P. Wan, F. Yao, X. Hu, Algorithms for minimum m-connected k-tuple dominating set problem. Theor. Comput. Sci. 381(1–3), 241–247 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  23. K.G. Hill, J.D. Hawkins, R.F. Catalano, R.D. Abbott, J. Guo, Family influences on the risk of daily smoking initiation. J. Adolesc. Health 37(3), 202–210 (2005)

    Article  Google Scholar 

  24. J.B. Standridge, R.G. Zylstra, S.M. Adams, Alcohol consumption: an overview of benefits and risks. South. Med. J. 97(7), 664–672 (2004)

    Article  Google Scholar 

  25. P. Domingos, M. Richardson, Mining the network value of customers, in KDD ’01: Proceedings of The 7th ACM SIGKDD International Conference on Knowledge Discovery and Datamining (ACM, New York, 2001), pp. 57–66

    Google Scholar 

  26. D. Kempe, J. Kleinberg, É. Tardos, Maximizing the spread of influence through a social network, in KDD’03: Proceedings of the 9th ACM SIGKDD international conference on Knowledge discovery and data mining (ACM, New York, 2003), pp. 137–146

    Google Scholar 

  27. D. Kempe, J. Kleinberg, E. Tardos, Influential nodes in a diffusion model for social networks, in International Colloquium on Automata, Languages and Programming ’05 (Springer, Berlin/Heidelberg, 2005), pp. 1127–1138

    Google Scholar 

  28. J. Leskovec, A. Krause, C. Guestrin, C. Faloutsos, J. VanBriesen, N. Glance, Cost-effective outbreak detection in networks, in ACM SIGKDD Conference on Knowledge Discovery and Data Mining ’07 (ACM, New York, 2007), pp. 420–429

    Google Scholar 

  29. T.N. Dinh, N.T. Dung, M.T. Thai, Cheap, easy, and massively effective viral marketing in social networks: Truth or fiction? in Proceedings of the 23rd ACM conference on Hypertext and Social Media, HT ’12 (ACM, Milwaukee, 2012)

    Google Scholar 

  30. D. Peleg, Local majority voting, small coalitions and controlling monopolies in graphs: A review, in SIROCCO’96: Colloquium on Structural Information and Communication Complexity, Weizmann Science Press of Israe, Jerusalem, Israel, (1996), pp. 152–169

    Google Scholar 

  31. W. Zhang, Z. Zhang, W. Wang, F. Zou, W. Lee, Polynomial time approximation scheme for t-latency bounded information propagation problem inwirelessnetworks. J. Comb. Optim., 1–11 (2010). doi:10.1007/s10878-010-9359-x.

    Google Scholar 

  32. S. Khot, O. Regev, Vertex cover might be hard to approximate to within 2-[epsilon]. J. Comput. Syst. Sci., 74(3), 335–349 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  33. M. Chlebík, J. Chlebíková, Approximation hardness of dominating set problems in bounded degree graphs. Inf. Comput. 206(11), 1264–1275 (2008)

    Article  MATH  Google Scholar 

  34. L. Trevisan, Non-approximability results for optimization problems on bounded degree instances, in ACM Symposium on Theory of Computing ’01 (ACM, New York, 2001), pp. 453–461

    Google Scholar 

  35. N. Kahale, Eigenvalues and expansion of regular graphs. J. ACM, 42, 1091–1106 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  36. S. Rajagopalan, V.V. Vazirani, Primal-dual rnc approximation algorithms for (multi)-set (multi)-cover and covering integer programs, in Annual IEEE Symposium on Foundations of Computer Science ’93 (IEEE Computer Society, Washington, DC, 1993), pp. 322–331

    Google Scholar 

  37. E.B. van Peter, R. Kaas, E. Zijlstra, Design and implementation of an efficient priority queue. Math. Syst. Theory 10, 99–127 (1977)

    Article  Google Scholar 

  38. G. Robins, A. Zelikovsky, Tighter bounds for graph steiner tree approximation. SIAM J. Discret. Math. 19, 122–134 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  39. L. Ruan, H. Du, X. Jia, W. Wu, Y. Li, K. Ko, A greedy approximation for minimum connected dominating sets. Theor. Comput. Sci. 329, 325–330 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  40. D.-Z. Du, R.L. Graham, P.M. Pardalos, P.-J. Wan, W. Wu, W. Zhao, Analysis of greedy approximations with nonsubmodular potential functions, in Proceedings of the nineteenth annual ACM-SIAM symposium on Discrete algorithms, SODA ’08 (Society for Industrial and Applied Mathematics, Philadelphia, 2008), pp. 167–175

    Google Scholar 

  41. B.S. Baker, Approximation algorithms for np-complete problems on planar graphs. J. ACM 41, 153–180 (1994)

    Article  MATH  Google Scholar 

  42. S. Khanna, R. Motwani, Towards a syntactic characterization of ptas, in Proceedings of the twenty-eighth annual ACM symposium on Theory of computing, STOC ’96 (ACM, New York, 1996), pp. 329–337

    Google Scholar 

  43. D. Eppstein, Diameter and treewidth in minor-closed graph families. Algorithmica 27(3), 275–291 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  44. M. Grohe, Local tree-width, excluded minors, and approximation algorithms. Combinatorica 23, 613–632 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  45. E.D. Demaine, M. Hajiaghayi, Bidimensionality: new connections between fpt algorithms and ptass, in Proceedings of the sixteenth annual ACM-SIAM symposium on Discrete algorithms, SODA ’05 (Society for Industrial and Applied Mathematics, Philadelphia, 2005), pp. 590–601

    Google Scholar 

  46. M. Gibson, I. Pirwani, Algorithms for dominating set in disk graphs: Breaking the log n barrier, in European Symposia on Algorithms 2010, ed. by M. de Berg, U. Meyer. Volume 6346 of Lecture Notes in Computer Science (Springer, Berlin/Heidelberg, 2010), pp. 243–254

    Chapter  Google Scholar 

  47. A. Czygrinow, M. Hanckowiak, W. Wawrzyniak, Fast distributed approximations in planar graphs, in Distributed Computing, ed. by G. Taubenfeld. Volume 5218 of Lecture Notes in Computer Science (Springer, Berlin/Heidelberg, 2008), pp. 78–92

    Chapter  Google Scholar 

  48. D. Dai, C. Yu, A 5+[epsilon]-approximation algorithm for minimum weighted dominating set in unit disk graph. Theor. Comput. Sci. 410(8–10), 756–765 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  49. M. Girvan, M.E. Newman, Community structure in social and biological networks. PNAS 99(12), 7821–7826 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  50. C. Gkantsidis, M. Mihail, A. Saberi, Conductance and congestion in power law graphs, in SIGMETRICS ’03: Proceedings of the International Conference on Measurements and Modeling of Computer Systems (ACM, New York, 2003), pp. 148–159

    Google Scholar 

  51. A. Ferrante, G. Pandurangan, K. Park, On the hardness of optimization in power-law graphs. Theor. Comput. Sci. 393(1–3), 220–230 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  52. W. Aiello, F. Chung, L. Lu, A random graph model for power law graphs. Exp. Math. 10, 53–66 (2000)

    Article  MathSciNet  Google Scholar 

  53. Y. Shen, D.T. Nguyen, Y. Xuan, M.T. Thai, New techniques for approximating optimal substructure problems in power-law graphs. Theor. Comput. Sci. (2011)

    Google Scholar 

  54. A. Barabasi, H. Jeong, Z. Neda, E. Ravasz, A. Schubert, T. Vicsek, Evolution of the social network of scientific collaborations. Phys. A 311(3–4), 590–614 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  55. B. Viswanath, A. Mislove, M. Cha, K.P. Gummadi, On the evolution of user interaction in facebook, in WOSN’09 (ACM, New York, 2009)

    Google Scholar 

  56. A. Mislove, M. Marcon, K.P. Gummadi, P. Druschel, B. Bhattacharjee, Measurement and analysis of online social networks, in IMC’07, San Diego, CA (ACM, New York, 2007)

    Google Scholar 

  57. A. Srinivasan, Improved approximations of packing and covering problems, in Proceedings of the twenty-seventh annual ACM symposium on Theory of computing, STOC ’95 (ACM, New York, 1995), pp. 268–276

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Thang N. Dinh , D. T. Nguyen or My T. Thai .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this entry

Cite this entry

Dinh, T.N., Nguyen, D.T., Thai, M.T. (2013). A Unified Approach for Domination Problems on Different Network Topologies. In: Pardalos, P., Du, DZ., Graham, R. (eds) Handbook of Combinatorial Optimization. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-7997-1_24

Download citation

Publish with us

Policies and ethics