Skip to main content

Complexity Issues on PTAS

  • Reference work entry
  • First Online:
Handbook of Combinatorial Optimization
  • 7250 Accesses

Abstract

This chapter surveys various complexity issues of polynomial time approximation schemes (PTAS). Also under consideration are the refined subclasses of PTAS, including fully polynomial time approximation schemes (FPTAS) and efficient polynomial time approximation schemes (EPTAS). The key questions under consideration are as follows: what optimization problems have PTASs, FPTASs, and EPTASs, and how efficient are these algorithms?

On the positive side, there are syntactic classes for characterizing PTAS, FPTAS, and EPTAS. Expressing a problem as a member in these classes automatically gives an approximation scheme for the problem. For many graph problems on planar graphs, there are powerful graph-theory techniques for designing PTAS and EPTAS algorithms, which can be extended to some generalizations of planar graphs. On the negative side, there are convincing evidences that, for a large set of NP-hard optimization problems, efficient approximation schemes do not exist. Even for many problems that have PTASs or EPTASs, their running time has a strong lower bound.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 3,400.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Recommended Reading

  1. S. Arora, Polynomial time approximation schemes for euclidean tsp and other geometric problems, in Proceedings of the 37th Annual Symposium on Foundations of Computer Science (IEEE Computer Society, Los Alamitos, 1996), pp. 2–12

    Google Scholar 

  2. S. Arora, Nearly linear time approximation schemes for Euclidean TSP and other geometric problems, in Proceedings of the 38th Annual Symposium on Foundations of Computer Science (IEEE Computer Society, Los Alamitos, 1997), pp. 554–563

    Google Scholar 

  3. G. Ausiello, A. Marchetti-Spaccamela, M. Protasi, Toward a unified approach for the classification of NP-complete optimization problems. Theor. Comput. Sci. 12, 83–96 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  4. B.S. Baker, Approximation algorithms for NP-complete problems on planar graphs. J. ACM 41, 153–180 (1994)

    Article  MATH  Google Scholar 

  5. M. Bateni, M. Hajiaghayi, D. Marx, Approximation schemes for steiner forest on planar graphs and graphs of bounded treewidth, in Proceedings of the 42nd ACM Symposium on Theory of Computing (ACM, New York, 2010), pp. 211–220

    Google Scholar 

  6. C. Bazgan, Schémas d’approximation et complexité paramétrée. Rapport de stage de DEA d’Informatique à Orsay, 1995

    Google Scholar 

  7. H.L. Bodlaender, A partial k-arboretum of graphs with bounded treewidth. Theor. Comput. Sci. 209, 1–45 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  8. G. Borradaile, C. Kenyon-Mathieu, P. Klein, A polynomial-time approximation scheme for steiner tree in planar graphs, in Proceedings of the 18th Annual ACM-SIAM Symposium on Discrete Algorithms (Association for Computing Machinery, New York, 2007), pp. 1285–1294

    Google Scholar 

  9. L. Cai, J. Chen, Fixed parameter tractability and approximability of NP-hard optimization problems. J. Comput. Syst. Sci. 54, 465–474 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  10. L. Cai, M. Fellows, D. Juedes, F. Rosamond, The complexity of polynomial-time approximation. Theory Comput. Syst. 41, 459–477 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  11. C. Chekuri, S. Khanna, A PTAS for the multiple knapsack problem, in Proceedings of the 11th Annual ACM-SIAM Symposium on Discrete Algorithms (Association for Computing Machinery, New York, 2000), pp. 213–222

    Google Scholar 

  12. J. Chen, Computational optimization. Manuscript. Available at http://faculty.cs.tamu.edu/chen/notes/opt.pdf

  13. J. Chen, Characterizing parallel hierarchies by reducibilities. Inf. Process. Lett. 39, 303–307 (1991)

    Article  MATH  Google Scholar 

  14. J. Chen, A. Miranda, A polynomial time approximation scheme for general multiprocessor job scheduling. SIAM J. Comput. 31, 1–17 (2002)

    Article  MathSciNet  Google Scholar 

  15. J. Chen, X. Huang, I.A. Kanj, G. Xia, Linear FPT reductions and computational lower bounds. J. Comput. Syst. Sci. 72(8), 1346–1367 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  16. J. Chen, X. Huang, I.A. Kanj, G. Xia, Strong computational lower bounds via parameterized complexity. J. Comput. Syst. Sci. 72, 1346–1367 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  17. J. Chen, X. Huang, I.A. Kanj, G. Xia, Polynomial time approximation schemes and parameterized complexity. Discret. Appl. Math. 155, 180–193 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  18. T. Coleman, A. Wirth, A polynomial time approximation scheme for k-consensus clustering, in Proceedings of the 21st Annual ACM-SIAM Symposium on Discrete Algorithms (Association for Computing Machinery, New York, 2010), pp. 729–740

    Google Scholar 

  19. E.D. Demaine, F.V. Fomin, M. Hajiaghayi, D.M. Thilikos, Subexponential parameterized algorithms on bounded-genus graphs and H-minor-free graphs. J. ACM 52, 866–893 (2005)

    Article  MathSciNet  Google Scholar 

  20. E.D. Demaine, M. Hajiaghayi, Bidimensionality: new connections between FPT algorithms and PTASs, in Proceedings of the 16th Annual ACM-SIAM Symposium on Discrete Algorithms (Association for Computing Machinery, New York, 2005), pp. 590–601

    Google Scholar 

  21. E.D. Demaine, M. Hajiaghayi, Graphs excluding a fixed minor have grids as large as treewidth, with combinatorial and algorithmic applications through bidimensionality, in Proceedings of the 16th Annual ACM-SIAM Symposium on Discrete Algorithms (Association for Computing Machinery, New York, 2005), pp. 682–689

    Google Scholar 

  22. E.D. Demaine, M. Hajiaghayi, The bidimensionality theory and its algorithmic applications. Comput. J. 51(3), 292–302 (2008)

    Article  Google Scholar 

  23. E.D. Demaine, F.V. Fomin, M.T. Hajiaghayi, D.M. Thilikos, Bidimensional parameters and local treewidth. SIAM J. Discret. Math. 18, 501–511 (2005)

    Article  MathSciNet  Google Scholar 

  24. X. Deng, G. Li, Z. Li, B. Ma, L. Wang, A PTAS for distinguishing (sub)string selection, in Proceedings of the 29th International Colloquium on Automata, Languages, and Programming. Volume 2380 of LNCS (Springer, Berlin, 2002), pp. 740–751

    Google Scholar 

  25. X. Deng, G. Li, Z. Li, B. Ma, L. Wang, Genetic design of drugs without side-effects. SIAM J. Comput. 32, 1073–1090 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  26. R. Downey, Parameterized complexity for the skeptic, in Proceedings of the 18th IEEE Annual Conference on Computational Complexity (IEEE Computer Society, Los Alamitos, 2003), pp. 147–169

    Google Scholar 

  27. R. Downey, M. Fellows, Parameterized Complexity (Springer, New York, 1999)

    Book  Google Scholar 

  28. D. Eppstein, Diameter and treewidth in minor-closed graph families. Algorithmica 27, 275–291 (1999)

    Article  MathSciNet  Google Scholar 

  29. T. Erlebach, K. Jansen, E. Seidel, Polynomial-time approximation schemes for geometric graphs, in Proceedings of the 12th Annual ACM-SIAM Symposium on Discrete Algorithms (Association for Computing Machinery, New York, 2001), pp. 671–679

    Google Scholar 

  30. F.V. Fomin, D. Lokshtanov, S. Saurabh, D.M. Thilikos, Bidimensionality and kernels, in Proceedings of the 21st Annual ACM-SIAM Symposium on Discrete Algorithms (Association for Computing Machinery, New York, 2010), pp. 503–510

    Google Scholar 

  31. M. Garey, D. Johnson, Computers and Intractability: A Guide to the Theory of NP-Completeness (W. H. Freeman, New York, 1979)

    MATH  Google Scholar 

  32. J. Gramm, J. Guo, R. Niedermeier, On exact and approximation algorithms for distinguishing substring selection, in Proceedings of the 4th International Symposium on Fundamentals of Computation Theory. Volume 2751 of LNCS (Springer, Berlin, 2003), pp. 195–209

    Google Scholar 

  33. J. Håstad, Clique is hard to approximate within n 1 − ∊, in Proceedings of the 37th Annual IEEE Symposium on Foundations of Computer Science, Los Alamitos, CA, USA, 1996, pp. 627–636

    Google Scholar 

  34. D.S. Hochbaum (ed.), Approximation Algorithms for NP-Hard Problems (PWS Publishing Co., Boston, 1997)

    Google Scholar 

  35. H.B. Hunt, III, M.V. Marathe, V. Radhakrishnan, S.S. Ravi, D.J. Rosenkrantz, R.E. Stearns, NC-approximation schemes for NP- and PSPACE-hard problems for geometric graphs. J. Algorithms 26, 238–274 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  36. O. Ibarra, C. Kim, Fast approximation algorithms for the Knapsack and Sum of Subset problems. J. ACM 22, 463–468 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  37. K. Jansen, Parameterized approximation scheme for the multiple knapsack problem, in Proceedings of the 20th Annual ACM-SIAM Symposium on Discrete Algorithms (ACM, New York, 2009), pp. 665–674

    Google Scholar 

  38. S. Khanna, R. Motwani, Towards a syntactic characterization of PTAS, in In Proceedings of the 28th ACM Symposium on Theory of Computing (ACM, New York, 1996), pp. 329–337

    Google Scholar 

  39. S. Khanna, R. Motwani, M. Sudan, U. Vazirani, On syntactic versus computational views of approximability. SIAM J. Comput. 28, 164–191 (1999)

    Article  MathSciNet  Google Scholar 

  40. R.J. Lipton, R.E. Tarjan, A separator theorem for planar graphs. SIAM J. Appl. Math. 36(2), 177–189 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  41. R.J. Lipton, R.E. Tarjan, Applications of a planar separator theorem. SIAM J. Comput. 9(3), 615–627 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  42. D. Marx, Efficient approximation schemes for geometric problems? in Proceedings of 13th Annual European Symposium on Algorithms. Volume 3669 of LNCS (2005), pp. 448–459

    Google Scholar 

  43. D. Marx, On the optimality of planar and geometric approximation schemes, in Proceedings of the 48th Annual IEEE Symposium on Foundations of Computer Science (Springer, Berlin/Heidelberg/New York, 2007), pp. 338–348

    Google Scholar 

  44. R. Ostrovsky, Y. Rabani, Polynomial time approximation schemes for geometric k-clustering, in Proceedings of the 41st Annual Symposium on Foundations of Computer Science (IEEE Computer Society, Los Alamitos, 2000), pp. 349–358

    Google Scholar 

  45. C. Papadimitriou, M. Yannakakis, Optimization, approximation, and complexity classes. J. Comput. Syst. Sci. 43, 425–440 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  46. A. Paz, S. Moran, Nondeterministic polynomial optimization problems and their approximations. Theor. Comput. Sci. 15, 251–277 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  47. N. Robertson, P.D. Seymour, Graph minors. II. Algorithmic aspects of tree-width. J. Algorithms 7(3), 309–322 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  48. N. Robertson, P.D. Seymour, Graph minors. V. Excluding a planar graph. J. Comb. Theory B 41, 92–114 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  49. N. Robertson, P.D. Seymour, Excluding a graph with one crossing, in Graph Structure Theory’91, 1991, pp. 669–676

    Google Scholar 

  50. N. Robertson, P. Seymour, R. Thomas, Quickly excluding a planar graph. J. Comb. Theory B 62, 323–348 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  51. N. Robertson, P.D. Seymour, Graph minors. XII: distance on a surface. J. Comb. Theory B 64, 240–272 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  52. N. Robertson, P.D. Seymour, Graph minors. XVI. Excluding a non-planar graph. J. Comb. Theory B 89, 43–76 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  53. N. Robertson, P.D. Seymour, Graph minors. XX. Wagner’s conjecture. J. Comb. Theory B 92, 325–357 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  54. S. Sahni, Algorithms for scheduling independent tasks. J. ACM 23, 116–127 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  55. R. Shamir, D. Tsur, The maximum subforest problem: approximation and exact algorithms, in Proceedings of the 9th Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 394–399 (Association for Computing Machinery, New York, 1998)

    Google Scholar 

  56. G. Woeginger, When does a dynamic programming formulation guarantee the existence of an FPTAS, in Proceedings of the 10th Annual ACM-SIAM Symposium on Discrete Algorithms (Association for Computing Machinery, New York, 2001), pp. 820–829

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jianer Chen or Ge Xia .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this entry

Cite this entry

Chen, J., Xia, G. (2013). Complexity Issues on PTAS. In: Pardalos, P., Du, DZ., Graham, R. (eds) Handbook of Combinatorial Optimization. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-7997-1_19

Download citation

Publish with us

Policies and ethics