Skip to main content

System Dynamics and Its Contribution to Economics and Economic Modeling

  • Reference work entry
Book cover Complex Systems in Finance and Econometrics

Article Outline

Glossary

Definition of the Subject

Introduction

Types of Dynamic Simulation

Translating Existing Economic Models into a System Dynamics Format

Improving Existing Economic Models with System Dynamics

Creating Economic Dynamics Models from Scratch

Model Validity

Controversies

Future Directions

Bibliography

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 599.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

Stock:

Stocks, which are sometimes referred to as “levels” or “states”, accumulate (i. e., sum up) the information or material that flows into and out of them. Stocks are thus responsible for decoupling flows, creating delays, preserving system memory, and altering the time shape of flows.

Flow:

Flows of information or material enter and exit a system's stocks and, in so doing, create a system's dynamics. Stated differently, the net flow into or out of a stock is the stock's rate of change. When human decision making is represented in a system dynamics model, it appears in the system's flow equations. Mathematically, a system's flow equations are ordinary differential equations and their format determines whether or not a system is linear or nonlinear.

Feedback:

Feedback is the transmission and return of information about the amount of information or material that has accumulated in a system's stocks. When the return of this information reinforces a system's behavior, the loop is said to be positive. Positive loops are responsible for the exponential growth of a system over time. Negative feedback loops represent goal seeking behavior in complex systems. When a negative loop detects a gap between the amount of information or material in a system's stock and the desired amount of information or material, it initiates corrective action. If this corrective action is not significantly delayed, the system will smoothly adjust to its goal. If the corrective action is delayed, however, the system can overshoot or undershoot its goal and the system can oscillate.

Full information maximum likelihood with opti mal filtering:

FIMLOF is a sophisticated technique for estimating the parameters of a system dynamics model, while simultaneously fitting its output to numerical data. Its intellectual origins can be traced to control engineering and the work of Fred Schwepe. David Peterson pioneered a method for adapting FIMLOF for use in system dynamics modeling.

Bibliography

Primary Literature

  1. Barlas Y (1989) Multiple Tests for Validation of System Dynamics Type of Simulation Models. Eur J Operat Res 42(1):59–87

    Article  Google Scholar 

  2. Barr N (1988) The Phillips Machine. LSE Q Winter 2(4):305–337

    Google Scholar 

  3. Dangerfield BC (2007) System dynamics advances strategic economic transition planning in a developing nation. In: Qudrat-Ullah H, Spector M, Davidsen P (eds) Complex decision-making: Theory & practice. Springer, New York, pp 185–209

    Chapter  Google Scholar 

  4. Fiddaman T (1997) Feedback complexity in integrated climate-economy models. Ph D Dissertation, Sloan School of Management, Massachusetts Institute of Technology. Available from http://www.systemdynamics.org/

  5. Fiddaman T (2002) Exploring policy options with a behavioral climate‐economy model. Syst Dyn Rev 18(2):243–267

    Article  Google Scholar 

  6. Forrester J (1957) Dynamic models of economic systems and industrial organizations. System Dynamics Group Memo D-0. Massachusetts Institute of Technology. Available from http://www.systemdynamics.org/

  7. Forrester J (1961) Industrial dynamics. Pegasus Communications, Inc., Waltham

    Google Scholar 

  8. Forrester J (1968) Principles of systems. MIT Press, Cambridge

    Google Scholar 

  9. Forrester J (1969) Urban dynamics. Pegasus Communications, Inc., Waltham

    Google Scholar 

  10. Forrester J (1971) World dynamics. Pegasus Communications, Inc., Waltham

    Google Scholar 

  11. Forrester J (1975) Counterintuitive behavior of social systems. In: Forrester J (ed) Collected papers of Jay W Forrester, Pegasus Communications, Inc., Waltham, pp 211–244

    Google Scholar 

  12. Forrester J (1980) Information sources for modeling the national economy. J Am Statist Assoc 75(371):555–567

    Article  Google Scholar 

  13. Forrester J (1985) ‘The’ model versus a modeling ‘process’. Syst Dyn Rev 1(1 and 2):133–134

    Article  Google Scholar 

  14. Forrester J (2003) Economic theory for the new millennium. In: Eberlein R, Diker V, Langer R, Rowe J (eds) Proceedings of the Twenty‐First Annual Conference of the System Dynamics Society. Available from http://www.systemdynamics.org/

  15. Forrester J, Low G, Mass N (1974) The debate on world dynamics: A response to Nordhaus. Policy Sci 5:169–190

    Article  Google Scholar 

  16. Forrester J, Senge P (1980) Tests for building confidence in system dynamics models. In: Legasto Jr AA, Forrester JW, Lyneis JM (eds) TIMS Studies in the Management Sciences: System Dynamics, vol 14. North Holland Publishing Company, Amsterdam, pp 209–228

    Google Scholar 

  17. Forrester N (1982) A dynamic synthesis of basic macroeconomic theory: Implications for stabilization policy analysis, Ph D Dissertation, Alfred P Sloan School of Management, Massachusetts Institute of Technology. Available from http://www.systemdynamics.org/

  18. Graham A (1980) Parameter estimation in system dynamics modeling. In: Randers J (ed) Elements of the system dynamics method. Pegasus Communications, Inc., Waltham, pp 143–161

    Google Scholar 

  19. Greenberger M, Crenson M, Crissey B (1976) Models in the policy process: Public decision making in the computer era, Russell Sage Foundation, New York

    Google Scholar 

  20. Heilbroner R (1980) The worldly philosophers, 5th edn. Simon & Schuster, New York

    Google Scholar 

  21. Hicks J (1950) A contribution to the theory of the trade cycle. Oxford University Press, London

    Google Scholar 

  22. Homer J (1987) A diffusion model with application to evolving medical technologies. Technol Forecast Soc Change 31(3):197–218

    Article  Google Scholar 

  23. Low G (1980) The multiplier-accelerator model of business cycles interpreted from a system dynamics perspective. In: Randers J (ed) Elements of the system dynamics method. Pegasus Communications, Inc., Waltham, pp 76–94

    Google Scholar 

  24. Mashayekhi A, Vakili K, Foroughi H, Hadavandi M (2006) Supply demand world: An interactive learning environment for teaching microeconomics. In: Grosler A, Rouwette A, Langer R, Rowe J, Yanni J (eds) Proceedings of the of the Twenty‐Fourth International Conference of the System Dynamics Society. Available at http://www.systemdynamics.org/

  25. Mass N (1974) Readings in urban dynamics, vol I. Wright‐Allen Press, Cambridge

    Google Scholar 

  26. Mass N (1975) Economic cycles: An analysis of the underlying causes. MIT Press, Cambridge

    Google Scholar 

  27. Meadows D (1970) Dynamics of commodity production cycles. Massachusetts MIT Press, Cambridge

    Google Scholar 

  28. Meadows D, Meadows D, Randers J, Behrens III W (1972) The limits to growth: A report for the Club of Rome's project on the predicament of mankind. Universe Books, New York

    Google Scholar 

  29. Meadows D, Meadows D, Randers J (1992) Beyond the limits: Confronting global collapse, envisioning a sustainable future. Chelsea Green Publishing, White River Junction

    Google Scholar 

  30. Meadows D, Meadows D, Randers J (2002) Limits to growth: The 30-year update. Chelsea Green Publishing, White River Junction

    Google Scholar 

  31. Millennium Institute (2007) Introduction and Purpose of Threshold 21, http://www.millennium-institute.org/resources/elibrary/papers/T21Overview.pdf

  32. Moxnes E (1992) Positive feedback economics and the competition between ‘hard’ and ‘soft’ energy supplies. J Sci Ind Res 51(March):257–265

    Google Scholar 

  33. Nordhaus W (1972) World dynamics: Measurement without data. Econom J 83(332):1156–1183

    Google Scholar 

  34. Nordhaus W (1992) The “DICE” model: Background and structure of a dynamic integrated climate‐economy model of the economics of global warming. Cowles Foundation for Research in Economics at Yale University, Discussion Paper No. 1009

    Google Scholar 

  35. Nordhaus W (1992) Lethal model 2: The limits to growth revisited. Brookings Pap Econo Activity 2:1–59

    Article  Google Scholar 

  36. Paich M (1985) Generic structures. Syst Dyn Rev 1(1 and 2):126–132

    Article  Google Scholar 

  37. Paich M (1994) Managing the global commons. MIT Press, Cambridge

    Google Scholar 

  38. Peterson D (1975) Hypothesis, estimation, and validation of dynamic social models – energy demand modeling. Ph D Dissertation, Department of Electrical Engineering, Massachusetts Institute of Technology. Available from http://www.systemdynamics.org/

  39. Peterson D (1980) Statistical tools for system dynamics. In: Randers J (ed) Elements of the system dynamics method. Pegasus Communications, Inc., Waltham, pp 226–245

    Google Scholar 

  40. Phillips W (1954) Stabilization policy in a closed economy. Econom J 64(254):290–323

    Google Scholar 

  41. Radzicki M (1990) Methodologia oeconomiae et systematis dynamis. Syst Dyn Rev 6(2):123–147

    Article  Google Scholar 

  42. Radzicki M (1997) Introduction to system dynamics. Free web-based system dynamics tutorial. Available at http://www.systemdynamics.org/DL-IntroSysDyn/index.html

  43. Radzicki M (2003) Mr. Hamilton, Mr. Forrester and a foundation for evolutionary economics. J Econom Issues 37(1):133–173

    Google Scholar 

  44. Radzicki M (2004) Expectation formation and parameter estimation in nonergodic systems: the system dynamics approach to post Keynesian‐institutional economics. In: Kennedy M, Winch G, Langer R, Rowe J, Yanni J (eds) Proceedings of the Twenty‐Second International Conference of the System Dynamics Society. Available at http://www.systemdynamics.org/

  45. Radzicki M (2007) Institutional economics, post keynesian economics, and system dynamics: Three strands of a heterodox economics braid. In: Harvey JT, Garnett Jr. RF (eds) The future of heterodox economics. University of Michigan Press, Ann Arbor

    Google Scholar 

  46. Radzicki M, Sterman J (1994) Evolutionary economics and system dynamics. In: Englund R (ed) Evolutionary concepts in contemporary economics. University of Michigan Press, Ann Arbor, pp 61–89

    Google Scholar 

  47. Richardson G, Pugh A (1981) Introduction to system dynamics modeling with DYNAMO. Pegasus Communications, Inc., Waltham

    Google Scholar 

  48. Richmond B (1985) Conversing with a classic thinker: An illustration from economics. Users Guide to STELLA, Chapt 7. High Performance Systems, Inc., Lyme, New Hampshire, pp 75–94

    Google Scholar 

  49. Ryzhenkov A (2007) Controlling employment, profitability and proved non‐renewable reserves in a theoretical model of the US economy. In: Sterman J, Oliva R, Langer R, Rowe J, Yanni J (eds) Proceedings of the of the Twenty‐Fifth International Conference of the System Dynamics Society. Available at http://www.systemdynamics.org/

  50. Schroeder W, Sweeney R, Alfeld L (1975) Readings in Urban Dynamics, vol II. Wright‐Allen Press, Cambridge

    Google Scholar 

  51. Senge P (1980) A system dynamics approach to investment function formulation and testing. Soc-Econ Plan Sci 14:269–280

    Article  Google Scholar 

  52. Solow R (1956) A contribution to the theory of economic growth. Q J Econom 70:65–94

    Article  Google Scholar 

  53. Sterman J (1981) The energy transition and the economy: A system dynamics approach. Ph D Dissertation, Alfred P Sloan School of Management, Massachusetts Institute of Technology. Available at http://www.systemdynamics.org/

  54. Sterman J (1985) A behavioral model of the economic long wave. J Econom Behav Organ 6:17–53

    Article  Google Scholar 

  55. Sterman J (2000) Business dynamics: Systems thinking and modeling for a complex world. Irwin-McGraw‐Hill, New York

    Google Scholar 

  56. Sterman J, Richardson G (1985) An experiment to evaluate methods for estimating fossil fuel resources. J Forecast 4(2):197–226

    Article  Google Scholar 

  57. Stolwijk J (1980) Comment on ‘information sources for modeling the national economy’ by Jay W Forrester. J Am Stat Assoc 75(371):569–572

    Article  Google Scholar 

  58. Weber L (2007) Understanding recent developments in growth theory. In: Sterman J, Oliva R, Langer R, Rowe J, Yanni J (eds) Proceedings of the of the Twenty‐Fifth International Conference of the System Dynamics Society. Available at http://www.systemdynamics.org/

  59. Wheat D (2007) The feedback method of teaching macroeconomics: Is it effective? Syst Dyn Rev 23(4):391–413

    Article  Google Scholar 

  60. Yamaguchi K (2007) Balance of payments and foreign exchange dynamics – S D Macroeconomic Modeling (4). In: Sterman J, Oliva R, Langer R, Rowe J, Yanni J (eds) Proceedings of the of the Twenty‐Fifth International Conference of the System Dynamics Society. Available at http://www.systemdynamics.org/

  61. Zellner A(1980) Comment on ‘information sources for modeling the national economy’ by Jay W Forrester. J Am Stat Assoc 75(371):567–569

    Article  Google Scholar 

Books and Reviews

  1. Alfeld L, Graham A (1976) Introduction to urban dynamics. Wright‐Allen Press, Cambridge

    Google Scholar 

  2. Lyneis J (1980) Corporate planning and policy design: A system dynamics approach. PA Consulting, Cambridge

    Google Scholar 

  3. Meadows D, Meadows D (1973) Toward global equilibrium: Collected papers. Wright‐Allen Press, Cambridge

    Google Scholar 

  4. Meadows D, Behrens III W, Meadows D, Naill R, Randers J, Zahn E (1974) Dynamics of growth in a finite world. Wright‐Allen Press, Cambridge

    Google Scholar 

  5. Meadows D, Robinson J (1985) The electronic oracle: Computer models and social decisions. Wiley, New York

    Google Scholar 

  6. Richardson G (1999) Feedback thought in social science and systems theory. Pegasus Communications, Inc., Waltham

    Google Scholar 

  7. Sterman J (1988) A skeptic's guide to computer models. In: Grant L (ed) Foresight and National Decisions. University Press of America, Lanham, pp 133–169, Revised and Reprinted in: Barney G, Kreutzer W, Garrett M (1991) Managing a Nation. Westview Press, Boulder, pp 209–230

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag

About this entry

Cite this entry

Radzicki, M.J. (2009). System Dynamics and Its Contribution to Economics and Economic Modeling. In: Meyers, R. (eds) Complex Systems in Finance and Econometrics. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-7701-4_39

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-7701-4_39

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4419-7700-7

  • Online ISBN: 978-1-4419-7701-4

  • eBook Packages: Business and Economics

Publish with us

Policies and ethics