Skip to main content

Nonparametric Tests for Independence

  • Reference work entry
Complex Systems in Finance and Econometrics
  • 2919 Accesses

Article Outline

Glossary

Definition of the Subject

Introduction

Invariant Tests

Tests Based on Divergence Measures

Tests Based on Other Measures of Dependence

Bootstrap and Permutation Tests

Future Directions

Bibliography

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 599.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    It is exactly degenerate for i.i.d. data from the uniform distribution on the circle, i. e. the interval \({[0,a]}\) with the endpoints identified [16]. Theiler [102] simulated variance of \( S=C_{m,n}(\varepsilon)-(C_{i,n}(\varepsilon))^m \) in the degenerate case, and found that it converges to 0 at the rate \({n^{-2}}\) instead of the usual rate \({n^{-1}}\).

Abbreviations

Hypothesis :

A hypothesis is a statement concerning the (joint) distribution underlying the observed data.

Nonparametric test :

In contrast to a parametric test, a nonparametric test does not presume a particular parametric structure concerning the data generating process.

Serial dependence :

Statistical dependence among time series observations.

Time series :

A sequence of observed values of some variable over time, such as a historical temperature record, a sequence of closing prices of a stock, etc.

Bibliography

  1. Aparicio FM, Escribano A (1998) Information‐theoretic analysis of serial dependence and cointegration. Stud nonlinear dyn econ 3:119–140

    Article  Google Scholar 

  2. Ashley RA, Patterson DM (1986) A nonparametric, distribution‐free test for serial independence in stock returns. J Financial Quant Anal 21:221–227

    Article  Google Scholar 

  3. Ashley RA, Patterson DM (1989) Linear versus nonlinear macroeconomics: A statistical test. Int Econ Rev 30:165–187

    Article  Google Scholar 

  4. Ashley RA, Patterson DM, Hinich MN (1986) A diagnostic check for nonlinear serial dependence in time series fitting errors. J Time Ser Anal 7:165–187

    Article  Google Scholar 

  5. Barnard GA (1963) Discussion of Professor Bartlett's paper. J Royal Stat Soc Ser B 25:294

    Google Scholar 

  6. Bartels R (1982) The rank version of von Neumann's ratio test for randomness. J Am Stat Assoc 77:40–46

    Article  Google Scholar 

  7. Benghabrit Y, Hallin M (1992) Optimal rank‐based tests against 1st‐order superdiagonal bilinear dependence. J Stat Plan Inference 32:45–61

    Article  Google Scholar 

  8. Bera AK, Robinson PM (1989) Tests for serial dependence and other specification analysis in models of markets in equilibrium. J Bus Econ Stat 7:343–352

    Article  Google Scholar 

  9. Beran J (1992) A goodness‐of‐fit test for time‐series with long‐range dependence. J Royal Stat Soc Ser B 54:749–760

    Google Scholar 

  10. Blum JR, Kiefer J, Rosenblatt M (1961) Distribution free tests of independence based on sample distribution functions. Ann Math Stat 32:485–498

    Article  Google Scholar 

  11. Bollerslev T (1986) Generalized autoregressive heteroskedasticity. J Econometrics 31:307–327

    Article  Google Scholar 

  12. Booth GG, Martikainen T (1994) Nonlinear dependence in Finnish stock returns. Eur J Oper Res 74:273–283

    Article  Google Scholar 

  13. Box GEP, Pierce DA (1970) Distribution of residual autocorrelations in autoregressive‐integrated moving average time series models. J Am Stat Assoc 332:1509–1526

    Article  Google Scholar 

  14. Bradley R (1986) Basic properties of strong mixing conditions. In: Eberlein E, Taqqu MS (eds) Dependence in Probability and Statistics. Birkäuser, Basel

    Google Scholar 

  15. Brock WA, Dechert WD, Scheinkman JA (1987) A test for independence based on the correlation dimension. Working paper 8702. University of Wisconsin, Madison

    Google Scholar 

  16. Brock WA, Dechert WD, Scheinkman JA, LeBaron B (1996) A test for independence based on the correlation dimension. Econometric Rev 15:197–235

    Article  Google Scholar 

  17. Brockett PL, Hinich MD, Patterson D (1988) Bispectral based tests for the detection of Gaussianity and linearity in time series. J Am Stat Assoc 83:657–664

    Article  Google Scholar 

  18. Brooks C, Heravi SM (1999) The effect of (mis‐specified) GARCH filters on the filite sample distribution of the BDS test. Comput Econ 13:147–162

    Article  Google Scholar 

  19. Brooks C, Hinich MJ (1999) Cross‐correlations and cross‐bicorrelations in Sterling exchange rates. J Empir Finance 6:385–404

    Article  Google Scholar 

  20. Brooks C, Hinich MJ (2001) Bicorrelations and cross‐bicorrelations as non‐linearity tests and tools for exchange rate forecasting. J Forecast 20:181–196

    Article  Google Scholar 

  21. Caporale GM, Ntantamis C, Pantelidis T, Pittis N (2005) The BDS test as a test for the adequacy of a GARCH(1,1) specification: A Monte Carlo study. J Financial Econometric 3:282–309

    Article  Google Scholar 

  22. Carlstein E (1984) The use of sub‐series methods for estimating the variance of a general statistic from a stationary time series. Ann Stat 14:1171–1179

    Article  Google Scholar 

  23. Carlstein E (1988) Degenerate U‑statistics based on non‐independent observations. Calcutta Stat Assoc Bull 37:55–65

    Google Scholar 

  24. Chan NH, Tran LT (1992) Nonparametric tests for serial independence. J Time Ser Anal 13:19–28

    Article  Google Scholar 

  25. Corrado CJ, Schatzberg J (1990) A nonparametric, distribution‐free test for serial independence in stock returns: A correction. J Financial Quant Anal 25:411–415

    Article  Google Scholar 

  26. Csörgő S (1985) Testing for independence by the empirical characteristic function. J Multivar Anal 16:290–299

    Google Scholar 

  27. Debnath L, Mikusiński P (2005) Introduction to Hilbert Spaces With Applications, 3rd edn. Elsevier Academic Press, Burlington

    Google Scholar 

  28. Delgado M, Mora J (2000) A nonparametric test for serial independence of regression errors. Biometrika 87:228–234

    Article  Google Scholar 

  29. Delgado MA (1996) Testing serial independence using the sample distribution function. J Time Ser Anal 11:271–285

    Article  Google Scholar 

  30. Denker M, Keller G (1983) On U‐statistics and v. Mises' statistics for weakly dependent processes. Z Wahrscheinlichkeitstheorie verwandte Geb 64:505–522

    Google Scholar 

  31. Denker M, Keller G (1986) Rigorous statistical procedures for data from dynamical systems. J Stat Phys 44:67–93

    Article  Google Scholar 

  32. Diks C, Panchenko V (2007) Nonparametric tests for serial independence based on quadratic forms. Statistica Sin 17:81–97

    Google Scholar 

  33. Diks C, Panchenko V (2008) Rank‐based entropy tests for serial independence. Stud Nonlinear Dyn Econom 12(1)art.2:0–19

    Google Scholar 

  34. Diks C, Tong H (1999) A test for symmetries of multivariate probability distributions. Biometrika 86:605–614

    Article  Google Scholar 

  35. Dionísio A, Menezes R, Mendes DA (2006) Entropy‐based independence test. Nonlinear Dyn 44:351–357

    Google Scholar 

  36. Dufour JM (1981) Rank tests for serial dependence. J Time Ser Anal 2:117–128

    Article  Google Scholar 

  37. Dufour JM (2006) Monte Carlo tests with nuisance parameters: A general approach to finite‐sample inference and nonstandard asymptotics. J Econom 133:443–477

    Article  Google Scholar 

  38. Durbin J, Watson GS (1950) Testing for serial correlation in least‐squares regression, I. Biometrika 37:409–428

    Google Scholar 

  39. Durbin J, Watson GS (1951) Testing for serial correlation in least‐squares regression, II. Biometrika 38:159–177

    Google Scholar 

  40. Durbin J, Watson GS (1971) Testing for serial correlation in least‐squares regression, III. Biometrika 58:1–19

    Google Scholar 

  41. Durlauf S (1991) Spectral based testing of the martingale hypothesis. J Econometrics 50:355–376

    Article  Google Scholar 

  42. Engle R (1982) Autoregressive conditional heteroscedasticity with estimates of the variance of United Kingdom inflation. Econometrica 50:987–1007

    Article  Google Scholar 

  43. Ferguson TS, Genest C, Hallin M (2000) Kendall's tau for serial dependence. Can J Stat 28:587–604

    Article  Google Scholar 

  44. Fernandes M, Neri B (2008) Nonparametric entropy‐based tests of independence between stochastic processes. Econometric Reviews; Forthcoming

    Google Scholar 

  45. Genest C, Quessy JF, Rémillard B (2002) Tests of serial independence based on Kendall's process. Can J Stat 30:1–21

    Google Scholar 

  46. Genest C, Rémillard B (2004) Tests of independence and randomness based on the empirical copula process. Test 13:335–369

    Google Scholar 

  47. Genest C, Verret F (2005) Locally most powerful rank tests of independence for copula models. Nonparametric Stat 17:521–539

    Article  Google Scholar 

  48. Genest C, Ghoudi K, Rémillard B (2007) Rank‐based extensions of the Brock, Dechert, and Scheinkman test. J Am Stat Assoc 102:1363–1376

    Google Scholar 

  49. Ghoudi K, Kulperger RJ, Rémillard B (2001) A nonparametric test of serial independence for time series and residuals. J Multivar Anal 79:191–218

    Google Scholar 

  50. Granger C, Lin JL (2001) Using the mutual information coefficient to identify lags in nonlinear models. J Time Ser Anal 15:371–384

    Article  Google Scholar 

  51. Granger CW, Maasoumi E, Racine J (2004) A dependence metric for possibly nonlinear processes. J Time Ser Anal 25:649–669

    Article  Google Scholar 

  52. Grassberger P, Procaccia I (1983) Measuring the strangeness of strange attractors. Physica D 9:189–208

    Article  Google Scholar 

  53. Grassberger P, Schreiber T, Schaffrath C (1991) Nonlinear time sequence analysis. Int J Bifurc Chaos 1:521–547

    Article  Google Scholar 

  54. Hallin M, Ingenbleek J-F, Puri ML (1985) Linear serial rank tests for randomness against ARMA alternatives. Ann Stat 13:1156–1181

    Article  Google Scholar 

  55. Hallin M, Mélard G (1988) Rank-based tests for randomness against first-order serial dependence. J Am Stat Assoc 83:1117–1128

    Google Scholar 

  56. Hannan EJ (1957) Testing for serial correlation in least squares regression. Biometrika 44:57–66

    Google Scholar 

  57. Hinich M, Patterson D (1985) Evidence of nonlinearity in stock returns. J Bus Econ Stat 3:69–77

    Article  Google Scholar 

  58. Hinich MJ (1982) Testing for Gaussianity and linearity of a stationary time series. J Time Ser Anal 3:169–176

    Article  Google Scholar 

  59. Hinich MJ (1996) Testing for dependence in the input to a linear time series model. J Nonparametric Stat 8:205–221

    Article  Google Scholar 

  60. Hjellvik V, Tjøstheim D (1995) Nonparametric tests of linearity for time series. Biometrika 82:351–368

    Google Scholar 

  61. Hjellvik V, Yao Q, Tjøstheim D (1998) Linearity testing using polynomial approximation. J Stat Plan Inference 68:295–321

    Google Scholar 

  62. Hoeffding W (1948) A non‐parametric test of independence. Ann Math Stat 19:546–557

    Article  Google Scholar 

  63. Hong Y (1999) Hypothesis testing in time series via the empirical characteristic function: a generalized spectral density approach. J Am Stat Assoc 94:1201–1220

    Article  Google Scholar 

  64. Hong Y (2000) Generalized spectral tests for serial dependence. J Royal Stat Soc Ser B 62:557–574

    Article  Google Scholar 

  65. Hong Y, White H (2005) Asymptotic distribution theory for nonparametric entropy measures of serial dependence. Econometrica 73:837–901

    Article  Google Scholar 

  66. Horowitz JL (2001) The bootstrap. In: Heckman JJ, Leamer EE (eds) Handbook of Econometrics, vol 5. Elsevier, Amsterdam, pp 3159–3228

    Google Scholar 

  67. Horowitz JL, Spokoiny VG (2001) An adaptive, rate‐optimal test of a parametric mean‐regression model against a nonparametric alternative. Econometrica 69:599–631

    Article  Google Scholar 

  68. Joe H (1989) Relative entropy measures of multivariate dependence. J Am Stat Assoc 84:157–164

    Article  Google Scholar 

  69. Joe H (1990) Multivariate concordance. J Multivar Anal 35:12–30

    Article  Google Scholar 

  70. Johnson D, McLelland R (1997) Nonparametric tests for the independence of regressors and disturbances as specification tests. Rev Econ Stat 79:335–340

    Article  Google Scholar 

  71. Johnson D, McLelland R (1998) A general dependence test and applications. J Appl Econometrics 13:627–644

    Article  Google Scholar 

  72. Kallenberg WCM, Ledwina T (1999) Data driven rank tests for independence. J Am Stat Assoc 94:285–301

    Article  Google Scholar 

  73. Kendall MG (1938) A new measure of rank correlation. Biometrika 30:81–93

    Google Scholar 

  74. Kočenda E, Briatka Ľ (2005) Optimal range for the IID test based on integration across the correlation integral. Econometric Rev 24:265–296

    Google Scholar 

  75. Kulperger RJ, Lockhart RA (1998) Tests of independence in time series. J Time Ser Anal 1998:165–185

    Article  Google Scholar 

  76. Künsch HR (1989) The jackknife and the bootstrap for general stationary observations. Ann Stat 17:1217–1241

    Google Scholar 

  77. Lim KP, Hinich MJ, Liew VKS (2005) Statistical inadequacy of GARCH models for Asian stock markets: Evidence and implications. J Emerg Mark Finance 4:263–279

    Article  Google Scholar 

  78. Lima P De (1996) Nuisance parameter free properties of correlation integral based statistics. Econometric Rev 15:237–259

    Article  Google Scholar 

  79. Ljung GM, Box GEP (1978) On a measure of lack of fit in time series models. Biometrika 65:297–202

    Article  Google Scholar 

  80. Lo AW (2000) Finance: A selective survey. J Am Stat Assoc 95:629–635

    Article  Google Scholar 

  81. Maasoumi E (2002) Entropy and predictability of stock market returns. J Econometrics 107:291–312

    Article  Google Scholar 

  82. McLeod AI, Li WK (1983) Diagnostic checking ARMA time series models using squared‐residual autocorrelations. J Time Ser Anal 4:269–273

    Article  Google Scholar 

  83. Von Neumann J (1941) Distribution of the ratio of the mean square successive difference to the variance. Ann Math Stat 12:367–395

    Article  Google Scholar 

  84. Pinkse J (1998) A consistent nonparametric test for serial independence. J Econometrics 84:205–231

    Article  Google Scholar 

  85. Politis DN, Romano JP (1994) The stationary bootstrap. J Am Stat Assoc 89:1303–1313

    Article  Google Scholar 

  86. Racine J, Maasoumi E (2007) A versatile and robust metric entropy test for time‐irreversibility, and other hypotheses. J Econometrics 138:547–567

    Article  Google Scholar 

  87. Ramsey JB, Rothman P (1990) Time irreversibility of stationary time series: estimators and test statistics. Unpublished manuscript, Department of Economics, New York University and University of Delaware

    Google Scholar 

  88. Robinson PM (1991) Consistent nonparametric entropy‐based testing. Rev Econ Stud 58:437–453

    Article  Google Scholar 

  89. Rosenblatt M (1975) A quadratic measure of deviation of two‐dimensional density estimates and a test of independence. Ann Stat 3:1–14

    Article  Google Scholar 

  90. Rosenblatt M, Wahlen BE (1992) A nonparametric measure of independence under a hypothesis of independent components. Stat Probab Lett 15:245–252

    Article  Google Scholar 

  91. Rothman P (1992) The comparative power of the TR test against simple threshold models. J Appl Econometrics 7:S187–S195

    Article  Google Scholar 

  92. Scaillet O (2005) A Kolmogorov–Smirnov type test for positive quadrant dependence. Can J Stat 33:415–427

    Article  Google Scholar 

  93. Serfling RJ (1980) Approximation Theorems of Mathematical Statistics. Wiley, New York

    Book  Google Scholar 

  94. Silverman BW (1986) Density Estimation for Statistics and Data Analysis. Chapman and Hall, New York

    Google Scholar 

  95. Skaug HJ, Tjøstheim D (1993a) A nonparametric test for serial independence based on the empirical distribution function. Biometrika 80:591–602

    Google Scholar 

  96. Skaug HJ, Tjøstheim D (1993b) Nonparametric tests of serial independence. In: Subba Rao T (ed) Developments in Time Series Analysis: the M. B. Priestley Birthday Volume. Wiley, New York

    Google Scholar 

  97. Spearman C (1904) The proof and measurement of association between two things. Am J Psychol 15:72–101

    Article  Google Scholar 

  98. Subba Rao T, Gabr MM (1980) A test for linearity of stationary time series. J Time Ser Anal 1:145–158

    Article  Google Scholar 

  99. Takens F (1981) Detecting strange attractors in turbulence. In: Rand DA, Young LS (eds) Dynamical Systems and Turbulence, Warwick 1980. (Lecture Notes in Mathematics), vol 898. Springer, Berlin, pp 366–381

    Chapter  Google Scholar 

  100. Terdik G, Máth J (1998) A new test of linearity of time series based on the bispectrum. J Time Ser Anal 19:737–753

    Google Scholar 

  101. Theil H, Nagar AL (1961) Testing the independence of regression disturbances. J Am Stat Assoc 56:793–806

    Article  Google Scholar 

  102. Theiler J (1990) Statistical precision of dimension estimators. Phys Rev A 41:3038–3051

    Article  Google Scholar 

  103. Tjøstheim D (1996) Measures of dependence and tests of independence. Statistics 28:249–284

    Google Scholar 

  104. Tong H (1990) Non‐linear Time Series: A Dynamical Systems Approach. Clarendon Press, Oxford

    Google Scholar 

  105. Tsallis C (1998) Generalized entropy‐based criterion for consistent testing. Phys Rev E 58:1442–1445

    Article  Google Scholar 

  106. Wolff RC (1994) Independence in time series: another look at the BDS test. Philos Trans Royal Soc Ser A 348:383–395

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag

About this entry

Cite this entry

Diks, C. (2009). Nonparametric Tests for Independence. In: Meyers, R. (eds) Complex Systems in Finance and Econometrics. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-7701-4_35

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-7701-4_35

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4419-7700-7

  • Online ISBN: 978-1-4419-7701-4

  • eBook Packages: Business and Economics

Publish with us

Policies and ethics