Skip to main content

Crustal Deformation During the Seismic Cycle, Interpreting Geodetic Observations of

  • Reference work entry
Extreme Environmental Events
  • 1461 Accesses

Article Outline

Glossary

Definition of the Subject

Introduction

Highlights of Earthquake Geodesy

Modeling of Geodetic Observations

Future Directions

Bibliography

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 599.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

Aseismic:

Occurring without detectable radiated seismic energy.

Cascadia:

The region of the Pacific Northwest dominated by the Cascade Range and affected by subduction of the Juan de Fuca plate beneath North America.

Coseismic:

Occurring during an earthquake.

Elastic:

A form of behavior of a solid when subjected to stress. Elastic solids deform in response to stress by an amount proportional to a constant known as the “rigidity”. When any applied stress is removed, an elastic solid recovers its original shape.

Geodesy:

The study of the shape and area of the Earth, including large-scale variations that affect the rotation dynamics of the planet of the whole, down to smaller length scales of earthquakes, landslides, etc.

Forward model:

A description of what a model of some process would predict about behavior of the system, e. g., how a given distribution of subsurface slip on a fault during an earthquake should affect observations of ground deformation at the surface.

GPS:

Global Positioning System. A network of satellites that transmit a signal that can be used by receivers (small transportable and/or permanent affixed to the ground) to infer three‐dimensional positions.

InSAR:

Interferometric Synthetic Aperture Radar. The combination of Synthetic Aperture Radar imagery (generally acquired from airborne or satellite‐based platforms) to infer changes in ground deformation, digital elevation models, variations in atmospheric water vapor, etc.

Interseismic deformation:

Occurs in the time period between earthquakes, usually associated with gradual increase in elastic stress to be released in future earthquakes.

Inverse theory:

The approach to determining the values for parameters of a given physical model that best describe observations of the system of interest.

Leveling:

The field of geodesy involved in the determination of variations in angle from horizontal between nearby fixed points on the Earth's surface, usually converted to changes in elevations.

Locked zone:

The portion of the fault zone that does not slip during the interseismic period, therefore accumulating stress and eventually rupturing coseismically.

Paleoseismology:

The study of individual earthquakes that occurred in the past, usually before the advent of instrumental recordings of seismic events.

Plate tectonics:

The theory governing how discrete plates on the Earth's surface move relative to each other over geologic time.

Postseismic deformation:

Deformation occurring in the hours to years following an earthquake.

Seismic cycle:

The combination of strain build-up and release that occurs on plate margins and along faults within plates, accommodated by processes within the coseismic, postseismic and interseismic time scales.

Seismogenic:

The region of a fault zone that is capable of producing earthquakes. Also refers to effects caused by an earthquake.

Subduction:

The process by which one tectonic plate descends beneath another, usually accompanied by volcanism and seismicity.

Triangulation:

The field of geodesy related to measuring horizontal angles and changes in angles between networks of fixed points.

Trilateration:

The field of geodesy related to measuring distance and changes in distance between networks of fixed points.

Viscoelastic:

A material behavior that is a combination of viscous and elastic behavior, resulting in some permanent deformation when the material is subjected to changes in stress.

Viscosity:

A material property describing its ability to flow in response to an applied stress. A measure of the response of a material to a stress, resulting in permanent deformation. The deformation rate of a viscous material depends on both the viscosity and applied stress.

Bibliography

Primary Literature

  1. Akaike H (1980) Bayesian statistics. In: Bernardo JM, DeGroot MH, Lindley DV, Smith AFM (eds) Likelihood and the Bayes procedure. University Press, Valencia, pp 143–166

    Google Scholar 

  2. Allen CR et al (1972) Displacements on the Imperial, Superstition Hills, and San Andreas faults triggered by the Borrego Mountain Earthquake. US Geol Surv Prof Pap 787:87–104

    Google Scholar 

  3. Arnadottir T, Segall P (1994) The 1989 Loma Prieta earthquake imaged from inversion of geodetic data. J Geophys Res 99:21835–21855

    Article  Google Scholar 

  4. Backus G, Gilbert F (1970) Uniqueness in the inversion of inaccurate gross earth data. Phil Trans R Soc Lond 266:123–192

    Article  Google Scholar 

  5. Burgmann R et al (2002) Time‐dependent afterslip on and deep below the Izmit earthquake rupture. Bull Seism Soc Amer 92:126–137

    Google Scholar 

  6. Cervelli P et al (2001) Estimating source parameters from deformation data, with an application to the March 1997 earthquake swarm off the Izu Peninsula, Japan. J Geophys Res 106:11217–11237

    Google Scholar 

  7. Dieterich JH (1992) Earthquake nucleation on faults with rate- and state- dependent strength. Tectonophysics 211:115–134

    Article  Google Scholar 

  8. Dominguez S, Avouac JP, Michel R (2003) Horizontal coseismic deformation of the 1999 Chi-Chi earthquake measured from SPOT satellite images: Implications for the seismic cycle along the western foothills of central Taiwan. J Geophys Res 108. doi: 10.1029/2001JB000951

  9. Du Y, Aydin A, Segall P (1992) Comparison of various inversion techniques as applied to the determination of a geophysical deformation model for the 1983 Borah Peak earthquake. Bull Seism Soc Amer 82:1840–1866

    Google Scholar 

  10. Efron B, Tibshirani R (1993) An introduction to the bootstrap. In: Monographs on statistics and applied probability, vol 83. Chapman and Hall, London

    Google Scholar 

  11. Emardson TR, Simons M, Webb FH (2003) Neutral atmospheric delay in interferometric synthetic aperture radar applications: Statistical description and mitigation. J Geophys Res 108. doi: 10.1029/2002JB001781

  12. England P, Jackson J (1989) Active deformation of the continents. Annu Rev Earth Planet Sci 17:197–226

    Article  Google Scholar 

  13. Fialko Y (2004) Evidence of fluid‐filled upper crust from observations of post‐seismic deformation due to the 1992 Mw 7.3 Landers earthquake. J Geophys Res 109. doi: 10.1029/2004JB002985

  14. Fialko Y (2006) Interseismic strain accumulation and the earthquake potential on the southern San Andreas fault system. Nature 441:968–971

    Article  CAS  Google Scholar 

  15. Fialko Y et al (2002) Deformation on nearby faults induced by the 1999 Hector Mine Earthquake. Science 297:1858–1862

    Google Scholar 

  16. Fialko Y, Simons M, Agnew D (2001) The complete (3-D) surface displacement field in the epicentral area of the 1999 Mw 7.1 Hector Mine earthquake, California, from space geodetic observations. Geophys Res Lett 28:3063–3066

    Article  Google Scholar 

  17. Freymueller J, King NE, Segall P (1994) The Co‐seismic slip distribution of the Landers earthquake. Bull Seism Soc Amer 84:646–659

    Google Scholar 

  18. Funning GJ et al (2005) Surface displacements and source parameters of the 2003 Bam (Iran) earthquake from Envisat advanced synthetic aperture radar imagery. J Geophys Res 110. doi: 10.1029/2004JB003338

  19. Gilbert GK (1890) Lake Bonneville. In: US Geol Surv Monograph, vol 1. Washington

    Google Scholar 

  20. Goldstein R (1995) Atmospheric limitations to repeat‐track radar interferometry. Geophys Res Lett 22:2517–2520

    Article  Google Scholar 

  21. Griesbach CL (1893) Notes on the earthquake in Baluchistan on the 20th December 1892. Geol Survey India Rec 26

    Google Scholar 

  22. Hager BH, King RW, Murray MH (1991) Measurement of crustal deformation using the global positioning system. Annu Rev Earth Planet Sci 19:351–382

    Article  Google Scholar 

  23. Hanssen RA (2001) Radar interferometry: Data interpretation and error analysis. Kluwer, Dordrecht

    Google Scholar 

  24. Harris RA, Segall P (1987) Detection of a locked zone at depth on the Parkfield, California segment of the San Andreas Fault. J Geophys Res 92:7945–7962

    Article  Google Scholar 

  25. Hearn EH (2002) Dynamics of Izmit earthquake postseismic deformation and loading of the Duzce earthquake hypocenter. Bull Seism Soc Amer 92:172–193

    Article  Google Scholar 

  26. Hetland EA, Hager BH (2003) Postseismic relaxation across the central Nevada seismic belt. J Geophys Res 108. doi: 10.1029/2002JB002257

  27. Hirose H et al (1999) A slow thrust slip event following the two 1996 Hyuganada earthquakes beneath the Bungo Channel, southwest Japan. Geophys Res Lett 26:3237–3240

    Google Scholar 

  28. Hsu YJ et al (2006) Frictonal afterslip following the Mw 8.7, 2005 Nias-Simeulue earthquake, Indonesia. Science 312. doi: 10.1126/science.1126960

  29. Ito T, Hashimoto M (2004) Spatiotemporal distribution of interplate coupling in southwest Japan from inversion of geodetic data. J Geophys Res 109. doi: 10.1029/2002JB002358

  30. Jackson DD, Matsuura M (1985) A Bayesian approach to nonlinear inversion. J Geophys Res 90:581–591

    Article  Google Scholar 

  31. Johanson IA, Burgmann R (2005) Creep and quakes on the northern transition zone of the San Andreas Fault from GPS and InSAR data. Geophys Res Lett 32. doi: 10.1029/2005GL023150

  32. Johnson KM, Burgmann R, Larson K (2006) Frictional properties on the San Andreas fault near Parkfield, California, inferred from models of afterslip following the 2004 earthquake. Bull Seism Soc Amer 96:S321–S338

    Article  Google Scholar 

  33. Jonsson S et al (2003) Post‐earthquake ground movements correlated to pore‐pressure transients. Nature 424:179–183

    Google Scholar 

  34. Kanamori H, Stewart GS (1972) A slow earthquake. Phys Earth Planet Int 18:167–175

    Article  Google Scholar 

  35. King GCP, Stein RS, Rundle JB (1988) The growth of geological structures by repeated earthquakes 1: Conceptual framework. J Geophys Res 93:13307–13318

    Article  Google Scholar 

  36. Koto B (1983) On the cause of the great earthquake in central Japan, 1891. J Coll Sci Imp Univ Japan 5:296–353

    Google Scholar 

  37. Langbein J, Gwyther RL, Hart RHG, Gladwin MT (1999) Slip‐rate increase at Parkfield in 1993 detected by high‐precision EDM and borehole tensor strainmeters Source. Geophys Res Lett 26(16):2529–2532

    Article  Google Scholar 

  38. Langbein J, Murray JR, Snyder HA (2006) Coseismic and initial postseismic deformation from the 2004 Parkfield, California, Earthquake, observed by Global Positioning System, Electronic Distance Meter, Creep Meters, and Borehole Strainmeters. Bull Seism Soc Amer 96:304–320

    Article  Google Scholar 

  39. Larsen S et al (1992) Global Positioning System measurements of deformations associated with the 1987 Superstition Hills earthquake – evidence for conjugate faulting. J Geophys Res 97:4885–4902

    Google Scholar 

  40. Lawson AC et al (1908) The California earthquake of April 18, 1906 – report of the state earthquake investigation committee. Carnegie Insitute, Washinton

    Google Scholar 

  41. Lin J, Stein RS (1989) Coseismic folding, earthquake recurrence and the 1987 source mechanism at Whittier Narrows, Los Angeles Basin, California. J Geophys Res 94:9614–9632

    Article  Google Scholar 

  42. Lohman RB, McGuire JJ (2007) Earthquake swarms driven by aseismic creep in the Salton Trough, California. J Geophys Res 112. doi: 10.1029/2006JB004596

  43. Lohman RB, Simons M (2005) Some thoughts on the use of InSAR data to constrain models of surface deformation: Noise structure and data downsampling. Geochem Geophys Geosyst 6. doi: 10.1029/2004GC000841

  44. Lohman RB, Simons M (2005) Locations of selected small earthquakes in the Zagros mountains. Geochem Geophys Geosyst 6. doi: 10.1029/2004GC000849

  45. Lowry AR et al (2001) Transient fault slip in Guerrero, southern Mexico. Geophys Res Lett 28:3753–3756

    Google Scholar 

  46. Lyell C (1837) Principles of Geology, 5th edn. Murray, London

    Google Scholar 

  47. Lyons S, Sandwell D (2003) Fault creep along the southern San Andreas from interferometric synthetic aperture radar, permanent scatterers and stacking. J Geophys Res 108. doi: 10.1029/2002JB001831

  48. Mallet R (1862) The first principles of observational seismology. Chapman and Hall, London

    Google Scholar 

  49. Massonnet D, Rossi M, Carmona C, Adragna F, Pelzer G, Feigl K, Rabaute T (1993) The displacement field of the Landers earthquake mapped by radar interferometry. Nature 364:138–142

    Article  Google Scholar 

  50. McKay A (1890) On the earthquake of September 1888, in the Amuri and Marlborough districts of the South Island. NZ Geol Surv Rep Geol Explor 1885–1889 20:78–1007

    Google Scholar 

  51. McGuire J, Segall P (2003) Imaging of aseismic fault slip transients recorded by dense geodetic networks. Geophys J Int 155:778–788

    Article  Google Scholar 

  52. Menke W (1989) Geophysical data analysis: Discrete inverse theory. Academic Press, London

    Google Scholar 

  53. Middlemiss CS (1910) The Kangra earthquake of 4th April, 1905. Geol Surv India Mem 37

    Google Scholar 

  54. Miller MM et al (2002) Periodic slow earthquakes from the Cascadia subduction zone. Science 295:2423

    Google Scholar 

  55. Miyazaki S et al (2004) Space time distribution of afterslip following the 2003 Tokachi‐oki earthquake: Implications for variations in fault zone frictional properties. Geophys Res Lett 31. doi: 10.1029/2003GL019410

  56. Miyazaki S, McGuire JJ, Segall P (2003) A transient subduction zone slip episode in southwest Japan observed by the nationwide GPS array. J Geophys Res 108. doi: 10.1029/2001JB000456

  57. Molnar P, Tapponnier P (1975) Cenozoic tectonics of Asia: Effects of a continental collision. Science 189:419–425

    Article  CAS  Google Scholar 

  58. Muller JJA (1895) De verplaasting van eenige traiangulatie pilaren in de residenti Tapanuli (Sumatra) tengevolge de aardbeving van 17 Mei 1892. Natuurwet Tijdscht Ned Indie 54:299–307

    Google Scholar 

  59. Murray J, Segall P (2002) Testing time‐predictable earthquake recurrence by direct measurement of strain accumulation and release. Nature 419:298–291

    Article  Google Scholar 

  60. Nadeau RM, McEvilly TV (2004) Periodic pulsing of characteristic microearthquakes on the San Andreas Fault. Science 303:202–222

    Article  Google Scholar 

  61. Nur A, Hagai R, Beroza G (1993) The nature of the Landers‐Mojave earthquake line. Science 261:201–203

    Article  CAS  Google Scholar 

  62. Okada Y (1985) Surface deformation due to shear and tensile faults in a half space. Bull Seism Soc Amer 75:1135–1154

    Google Scholar 

  63. Okudo T (1950) On the mode off the vertical land‐deformation accompanying the great Nankaido earthquakes. Bull Geogr Surv Inst 2:37–59

    Google Scholar 

  64. Oldham RD (1928) The Cutch (Kacch) earthquake of 16th June 1819, with a revision of the great earthquake of 12th June 1897. Geol Surv India Mem 46:71–147

    Google Scholar 

  65. Ozawa S et al (2002) Detection and monitoring of ongoing aseismic slip in the Tokai region, central Japan. Science 298:1009–1012

    Google Scholar 

  66. Parker RL (1977) Understanding inverse theory. Annu Rev Earth Planet Sci 5:35–64

    Article  Google Scholar 

  67. Peltzer G, Crampe F, King G (1999) Evidence of nonlinear elasticity of the crust from the Mw 7.6 Manyi (Tibet) earthquake. Science 286:272–276

    Article  CAS  Google Scholar 

  68. Pollitz FF (2003) Transient rheology of the uppermost mantle beneath the Mojave desert, California. Earth Plan Sci Lett 215:89–104

    Article  CAS  Google Scholar 

  69. Pollitz FF, Sacks IS (2002) Stress triggering of the 1999 Hector Mine earthquake by transient deformation following the 1992 Landers Earthquake. Bull Seism Soc Amer 92:1487–1496

    Article  Google Scholar 

  70. Pritchard ME et al (2002) Co‐seismic slip from the 1995 July 30 Mw=8.1 Antofagasta, Chile, earthquake as constrained by InSAR and GPS observations. Geophys J Int 150:362–376

    Google Scholar 

  71. Pritchard ME, Simons M (2006) An aseismic slip pulse in northern Chile and along‐strike variations in seismogenic behavior. J Geophys Res 111. doi: 10.1029/2006JB004258

  72. Reid HF (1910) The mechanics of the earthquake. In: Lawson AC (ed) The California earthquake of April 18, 1906. Carnegie Institute, Washington

    Google Scholar 

  73. Reid HG (1911) The elastic‐rebound theory of earthquakes. Univ Calif Pub Bull 6:413–444

    Google Scholar 

  74. Reilinger R (1986) Evidence for postseismic viscoelastic relaxation following the 1959 M=7.5 Hebgen Lake, Montana, earthquake. J Geophys Res 91:9488–9494

    Article  Google Scholar 

  75. Roeloffs EA (2006) Evidence for aseismic deformation rate changes prior to earthquakes. Annu Rev Earth Planet Sci 34:591–627

    Article  CAS  Google Scholar 

  76. Rosen PA et al (2000) Synthetic aperture radar interferometry. Proc IEEE 88:333–382

    Google Scholar 

  77. Ruegg JC et al (1996) The Mw=8.1 Antofagasta (North Chile) earthquake July 30, 1995: First results from teleseismic and geodetic data. Geophys Res Lett 23:917–920

    Google Scholar 

  78. Sambridge M (1998) Geophysical inversion with a neighborhood algorithm – I: Searching a parameter space. Geophys J Int 138:479–494

    Article  Google Scholar 

  79. Savage JC, Lisowski M, Svarc JL (1994) Postseismic deformation following the 1989 (M=7.1) Loma Prieta, California, earthquake. J Geophys Res 99:13757–13765

    Article  Google Scholar 

  80. Schmidt DA et al (2005) Distribution of aseismic slip rate on the Hayward fault inferred from seismic and geodetic data. J Geophys Res 110. doi: 10.1029/2004JB003397

  81. Scholz CH (1998) Earthquakes and friction laws. Nature 391:37–42

    Article  CAS  Google Scholar 

  82. Segall P, Burgmann R, Matthews M (2000) Time‐dependent triggered afterslip following the 1989 Loma Prieta earthquake. J Geophys Res 105:S615–S634

    Article  Google Scholar 

  83. Segall P, Davis JL (1997) GPS Applications for Geodynamics and Earthquake Studies. Annu Rev Earth Planet Sci 25:301–336

    Article  CAS  Google Scholar 

  84. Segall P, Matthews M (1997) Time dependent inversion of geodetic data. J Geophys Res 102:22391–22409

    Article  Google Scholar 

  85. Simons M, Fialko Y, Rivera L (2002) Coseismic deformation from the 1999 Mw 7.1 Hector Mine, California, earthquake as inferred from InSAR and GPS observations. Bull Seism Soc Amer 92:1390–1402

    Article  Google Scholar 

  86. Sharp RV et al (1982) Surface faulting in the Imperial Valley. In: Sharp RV, Lienkaemper JJ, Bonilla MG, Burke DB, Cox BF, Herd DG, Miller DM, Morton DM, Ponti DJ, Rymer MJ, Tinsley JC, Yount JC, Kahle JE, Hart EW, Sieh K (eds) The Imperial Valley, California, earthquake of October 15, 1979. US Geol Surv Prop Pap 1254:119–144

    Google Scholar 

  87. Shelley DR et al (2006) Low frequency earthquakes in Shikoku, Japan, and their relationship to episodic tremor and slip. Nature 442:188–191

    Google Scholar 

  88. Shimazaki K, Nakata T (1980) Time‐Predictable Recurrence Model for Large Earthquakes. Geophys Res Lett 7(4):279–282

    Article  Google Scholar 

  89. Song AT, Simons M (2003) Large trench‐parallel gravity variations predict seismogenic behavior in subduction zones. Science 301:630–633

    Article  CAS  Google Scholar 

  90. Stein R (1999) The role of stress transfer in earthquake occurrence. Nature 402:605–609

    Article  CAS  Google Scholar 

  91. Tarantola A, Valette B (1982) Inverse problems = quest for information. J Geophys 50:159–170

    Google Scholar 

  92. Thatcher W (1984) The earthquake deformation cycle at the Nankai trough, southwest Japan. J Geophys Res 89:3087–3101

    Article  Google Scholar 

  93. Tsuboi C (1932) Investigation on the deformation of the earth’s crust in the Tango district connected with the Tango earthquake of 1927 (part 4). Bull Earthq Res Inst Tokyo Univ 10:411–434

    Google Scholar 

  94. Ward S, Valensise GR (1989) Fault parameters and slip distribution of the 1915 Avezzano, Italy, earthquake derived from geodetic observations. Bull Seism Soc Amer 79:690–710

    Google Scholar 

  95. Wells RE et al (2003) Basin‐centered asperities in great subduction zone earthquakes: A link between slip, subsidence and subduction erosion. J Geophys Res 108. doi: 10.1029/2002JB002072

  96. Williams S, Bock Y, Fang P (1998) Integrated satellite interferometry: Tropospheric noise, GPS estimates and implications for interferometric synthetic aperture radar products. J Geophys Res 103:27051–27067

    Article  Google Scholar 

  97. Yabuki T, Matsuura M (1992) Geodetic data inversion using a Bayesian information criterion for spatial distribution of fault slip. Geophys J Int 109:363–375

    Article  Google Scholar 

  98. Yang M et al (2000) Geodetically observed surface displacements of the 1999 Chi-Chi, Taiwan earthquake. Earth Planet Space 52:403–413

    Google Scholar 

  99. Yeats RS, Sieh K, Allen CF (1997) The geology of earthquakes. Oxford University Press, New York

    Google Scholar 

  100. Zebker HA, Rosen PA, Hensley S (1997) Atmospheric effects in interferometric synthetic aperture radar surface deformation and topographic maps. J Geophys Res 102:7547–7563

    Article  Google Scholar 

Books and Reviews

  1. Tse ST, Rice JR (1986) Crustal earthquake instability in relation to the depth variation of frictional slip properties. J Geophys Res 91:9452–9472

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag

About this entry

Cite this entry

Lohman, R. (2011). Crustal Deformation During the Seismic Cycle, Interpreting Geodetic Observations of. In: Meyers, R. (eds) Extreme Environmental Events. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-7695-6_8

Download citation

Publish with us

Policies and ethics