Skip to main content

Tsunami Earthquakes

  • Reference work entry
Extreme Environmental Events
  • 1427 Accesses

Article Outline

Glossary

Definition of the Subject

Introduction

Characteristics of Tsunami Earthquakes

Factors Involved in the Seismogenesis and Tsunamigenesis of Tsunami Earthquakes

A Model for Tsunami Earthquakes

Future Directions

Bibliography

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 599.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

\({m_{\text{b}}}\) :

body wave magnitude, based on the amplitude of the direct P wave, period of the measurement: 1.0–5.0 s. Also see: Seismic Magnitude.

\({M_{\text{S}}}\) :

surface wave magnitude, based on the amplitude of surface waves, period of the measurement: 20 s. Also see: Seismic Magnitude.

\({M_{\text{w}}}\) :

moment magnitude, determined from the seismic moment of an earthquake, typical period of the measurement: \({> 200}\) s. Also see: Seismic Magnitude.

Magnitude saturation:

due to the shape of the seismic source spectrum, relatively short period measurements of seismic magnitude will produce similar magnitudes for all earthquakes above a certain size. The value of this threshold earthquake size depends on the period of the measurement: magnitude measurements using shorter period waves will saturate at lower values than magnitude measurements using longer period waves. \({M_{\text{w}}}\) will not saturate.

Run-up height:

difference between the elevation of maximum tsunami penetration (inundation line) and the sea level at the time of the tsunami.

Tsunami earthquake:

an earthquake that directly causes a regional and/or teleseismic tsunami that is greater in amplitude than would be expected from its seismic moment magnitude.

Tsunami magnitude:

a scale for the relative size of tsunamis generated by different earthquakes, \({M_{\text{t}}}\) in particular is calculated from the logarithm of the maximum amplitude of the tsunami wave measured by a tide gauge distant from the tsunami source, corrected for the distance to the source (also see: Satake, this volume).

Seismic magnitude:

a scale for the relative size of earthquakes. Many different scales have been developed, almost all based on the logarithmic amplitude of a particular seismic wave on a particular type of seismometer, with corrections for the distance between source and receiver. These measurements are made for different wave types at different frequencies, and thus may lead to different values for magnitude for any one earthquake.

Seismic moment:

the product of the fault surface area of the earthquake, the rigidity of the rock surrounding the fault and the average slip on the fault.

Bibliography

Primary Literature

  1. Abe K (1979) Size of great earthquakes of 1873–1974 inferred from tsunami data. J Geophys Res 84:1561–1568

    Article  Google Scholar 

  2. Abe K (1989) Quantification of tsunamigenic earthquakes by the M t scale. Tectonophysics 166:21–34

    Article  Google Scholar 

  3. Abercrombie RE, Antolik M, Felzer K, Ekstrom G (2001) The 1994 Java tsunami earthquake- Slip over a subducting seamount. J Geophys Res 106:6595–6608

    Article  Google Scholar 

  4. Ammon CJ, Ji C, Thio HK, Robinson D, Ni S, Hjorleifsdottir V, Kanamori H, Lay T, Das S, Helmberg D, Ichinose G, Polet J, Wald D (2005) Rupture Process of the 2004 Sumatra–Andaman Earthquake. Science 308:1133. doi:10.1126/science.1112260

    Article  CAS  Google Scholar 

  5. Ammon CJ, Kanamori H, Lay T, Velasco AA (2006) The 17 July 2006 Java tsunami earthquake. Geophys Res Lett 33:24. doi:10.1029/2006GL028005

    Google Scholar 

  6. Barragan BE, Giaccio GM, Zerbino RL (2001) Fracture and failure of thermally damaged concrete under tensile loading. Mater Struct 34:312–319

    Article  Google Scholar 

  7. Beck SL, Ruff LJ (1987) Rupture process of the great 1963 Kuril Islands earthquake sequence: asperity interaction and multiple event rupture. J Geophys Res 92:14123–14138

    Article  Google Scholar 

  8. Bilek SL, Engdahl ER (2007) Rupture characterization and relocation aftershocks of for the 1994 and 2006 tsunami earthquakes in the Java subduction zone. Geophys Res Lett. 34:L20311. doi:10.1029/2007GL031357

  9. Bilek SL, Lay T (2002) Tsunami earthquakes possibly widespread manifestations of frictional conditional stability. Geophys Res Lett 29:18-1. doi:10.1029/2002GL01521

    Google Scholar 

  10. Bilek SL, Schwartz SY, Deshon HR (2003) Control of seafloor roughness on earthquake rupture behavior. Geology 31:455–458. doi:10.1130/0091-7613(2003)031

    Article  Google Scholar 

  11. Bourgeois J, Petroff C, Yeh H, Titov V, Synolakis CE, Benson B, Kuroiwa J, Lander J, Norabuena E (1999) Geologic Setting, Field Survey and Modeling of the Chimbote, Northern Peru, Tsunami of 21 February 1996. Pure Appl Geophys 154:513–540

    Article  Google Scholar 

  12. Brown DL (1964) Tsunami activity accompanying the alaskan earthquake of 27 March 1964. US Army Engr Dist, Alaska, 20 pp

    Google Scholar 

  13. Brune JN (1970) Tectonic stress and spectra of seismic shear waves from earthquakes. J Geophys Res 75:4997–5009

    Article  Google Scholar 

  14. Chung WY, Kanamori H (1978) Subduction process of a fracture zone and aseismic ridges – the focal mechanism and source characteristics of the New Hebrides earthquake of 1969 January 19 and some related events. Geophys J Int 54(1):221–240. doi:10.1111/j.1365-246X.1978.tb06764.x

    Article  Google Scholar 

  15. Cloos M (1992) Thrust‐type subduction‐zone earthquakes and seamount asperities; a physical model for seismic rupture. Geology 20:601–604

    Article  Google Scholar 

  16. Dmowska R, Zheng G, Rice JR (1996) Seismicity and deformation at convergent margins due to heterogeneous coupling. J Geophys Res 101:3015–3029

    Article  Google Scholar 

  17. Dominguez S, Malavieille J, Lallemand SE (2000) Deformation of accretionary wedges in response to seamount subduction: insight from sandbox experiments. Tectonics 19:182–196

    Article  Google Scholar 

  18. Engdahl ER, Villaseñor A (2002) Global seismicity: 1900–1999. In: Lee WHK, Kanamori H, Jennings PC, Kisslinger C (eds) International Handbook of Earthquake and Engineering Seismology. Academic Press, Amsterdam, Part A, chapt 41, pp 665–690

    Google Scholar 

  19. Fryer GJ, Watts P, Pratson LF (2004) Source of the great tsunami of 1 April 1946: a landslide in the upper Aleutian forearc. Mar Geol 203:201–218

    Article  Google Scholar 

  20. Fujii Y, Satake K (2006) Source of the July 2006 West Java tsunami estimated from tide gauge records. Geophys Res Lett 33:L24317.1–L24317.5. doi:10.1029/2006GL028049

    Article  Google Scholar 

  21. Fukao Y (1979) Tsunami earthquakes and subduction processes near deep-sea trenches. J Geophys Res 84:2303–2314

    Article  Google Scholar 

  22. Geist EL (2000) Origin of the 17 July 1998 Papua New Guinea tsunami: Earthquake or landslide? Seism Res Lett 71:344–351

    Google Scholar 

  23. Geist EL, Bilek SL (2001) Effect of depth‐dependent shear modulus on tsunami generation along subduction zones. Geophys Res Lett 28:1315–1318

    Article  Google Scholar 

  24. Geist EL, Dmowska R (1999) Local tsunamis and distributed slip at the source. Pure Appl Geophys 154:485-512

    Article  Google Scholar 

  25. Hara T (2006) Determination of earthquake magnitudes using duration of high‐frequency energy radiation and maximum displacement amplitudes: application to the July 17, 2006 Java earthquake and other tsunami earthquakes. Eos Trans AGU 87(52):Fall Meet Suppl, Abstract S21A-0132

    Google Scholar 

  26. Hatori T (1967) The generating area of the Sanriku earthquake of 1896 and its comparison with the tsunami of 1933. J Seismol Soc Jap Ser 2, 20:164–170

    Google Scholar 

  27. Heinrich P, Schindele F, Guibourg S, Ihmlé PF (1998) Modeling of the February 1996 Peruvian tsunami. Geophys Res Lett 25:2687–2690

    Google Scholar 

  28. Hidayat D, Barker JS, Satake K (1995) Modeling the seismic source and tsunami generation of the December 12, 1992 Flores island, Indonesia, earthquake. Pure Appl Geophys 144:537–554

    Article  Google Scholar 

  29. Hilde TWC (1983) Sediment subduction versus accretion around the Pacific. Tectonophys 99:381–397

    Article  Google Scholar 

  30. Ide S, Imamura F, Yoshida Y, Abe K (1993) Source characteristics of the Nicaraguan tsunami earthquake of September 2, 1992. Geophys Res Lett 20:863–866

    Article  Google Scholar 

  31. Ihmlé PF, Gomez JM, Heinrich P, Guibourg S (1998) The 1996 Peru tsunamigenic earthquake: Broadband source process. Geophys Res Lett 25:2691–2694

    Google Scholar 

  32. Imamura F, Gica E, Takahashi T, Shuto N (1995) Numerical simulation of the 1992 Flores tsunami: Interpretation of tsunami phenomena in northeastern Flores Island and damage at Babi Island. Pure Appl Geophys 144:555–568

    Article  Google Scholar 

  33. Ji C (2006) A comparison study of 2006 Java earthquake and other Tsunami earthquakes. Eos Trans AGU 87(52):Fall Meet Suppl, Abstract

    Google Scholar 

  34. Ji C (2006) Resolving the trade-off between the seismic moment and fault dip of large subduction earthquakes and its impact on tsunami excitation. Tsunami Sources Workshop. Menlo Park

    Google Scholar 

  35. Ji C. Zeng Y, Song AT (2007) Rupture process of the 2006 Mw 8.3 Kuril Island Earthquake inferred from joint inversion of teleseismic body and surface waves. SSA meeting. Kona

    Google Scholar 

  36. Johnson JM, Satake K (1997) Estimation of seismic moment and slip distribution of the April 1, 1946, Aleutian tsunami earthquake. J Geophys Res 102:11765–11774

    Article  Google Scholar 

  37. Kanamori H (1972) Mechanism of tsunami earthquakes. Phys Earth Planet Inter 6:346–359

    Article  Google Scholar 

  38. Kanamori H (1993) W phase. Geophys Res Lett 20:1691–1694

    Article  Google Scholar 

  39. Kanamori H, Given JW (1981) Use of long‐period surface waves for rapid determination of earthquake‐source parameters. Phys Earth Planet Int 27:8–31

    Article  Google Scholar 

  40. Kanamori H, Kikuchi M (1993) The 1992 Nicaragua earthquake – A slow tsunami earthquake associated with subducted sediments. Nature 361:714–716

    Article  Google Scholar 

  41. Kikuchi M, Kanamori H (1995) Source characteristics of the 1992 Nicaragua tsunami earthquake inferred from teleseismic body waves. Pure Appl Geophys 144:441–453

    Article  Google Scholar 

  42. Kodaira S, Iidaka T, Kato A, Park JO, Iwasaki T, Kaneda Y (2004) High pore fluid pressure may cause silent slip in the Nankai trough. Science 304:1295–1298. doi:10.1126/science.1096535

    Article  CAS  Google Scholar 

  43. Kodaira S, Takahashi N, Nakanishi A, Miura S, Kaneda Y (2000) Subducted seamount imaged in the rupture zone of the 1946 Nankaido earthquake. Science 289:104–106. doi:10.1126/science.289.5476.104

    Article  CAS  Google Scholar 

  44. Kulm LD, Prince RA, French W, Johnson S, Masias A (1981) Crustal structure and tectonics of the central Peru continental margin and trench. In: Kulm LD, Dymond J, Dasch EJ, Hussong DM (eds) Nazca Plate: Crustal formation and Andean Convergence. Geol Soc Am Mem 154:445–468

    Google Scholar 

  45. Lavigne F, Gomes C, Giffo M, Wassmer P, Hoebreck C, Mardiatno D, Prioyono J, Paris R (2007) Field observations of the 17 July 2006 Tsunami in Java. Nat Hazards Earth Syst Sci 7:177–183

    Article  Google Scholar 

  46. Lay T, Kanamori H, Ammon CJ, Nettles M, Ward SN, Aster RA, Beck SL, Bilek BL, Brudzinski MR, Butler R, DeShon HR, Ekström G, Satake K, Sipkin S (2005) The great Sumatra–Andaman earthquake of 26 December 2004. Science 308:1127–1133. doi:10.1126/science.1112250

    Google Scholar 

  47. Lopez AM, Okal EA (2006) A seismological reassessment of the source of the 1946 Aleutian ‘tsunami’ earthquake. Geophys J Int 165(3):835–849. doi:10.1111/j.1365-246X.2006.02899.x

    Article  Google Scholar 

  48. Masson DG, Parson LM, Milsom J, Nichols G, Sikumbang N, Dwiyanto B, Kallagher H (1990) Subduction of seamounts at the Java trench – a view with long-range sidescan sonar. Tectonophys 185:51–65

    Article  Google Scholar 

  49. McAdoo BG, Capone MK, Minder J (2004) Seafloor geomorphology of convergent margins: Implications for Cascadia seismic hazard. Tectonics 23:TC6008. doi:10.1029/2003TC001570

  50. Mori J, Mooney WD, Afnimar Kurniawan S, Anaya AI, Widiyantoro S (2007) The 17 July 2006 tsunami earthquake in west Java, Indonesia. Seismol Res Lett 78:291

    Article  Google Scholar 

  51. Newman AV, Okal EA (1998) Teleseismic estimates of radiated seismic energy: The E/M0 discriminant for tsunami earthquakes. J Geophys Res 103:26885–26898

    Article  Google Scholar 

  52. Okal EA (1988) Seismic parameters controlling far-field tsunami amplitudes: A review. Nat Haz 1:67–96

    Article  Google Scholar 

  53. Okal EA, Newman AV (2001) Tsunami earthquakes: The quest for a regional signal. Phys Earth Planet Inter 124:45–70

    Article  Google Scholar 

  54. Okamoto T, Takenaka H (2006) Source process of the July 17, 2006 off Java island earthquake by using a fine crustal structure model of the Java trench and a 2.5D FDM computations. Eos Trans AGU 87(52):Fall Meet Suppl, Abstract

    Google Scholar 

  55. Pacheco JF, Sykes LR, Scholz CH (1993) Nature of seismic coupling along simple plate boundaries of the subduction type. J Geophys Res 98:14133–14159

    Article  Google Scholar 

  56. Park J-O, Tsuru T, Kodaira S, Cummins PR, Kaneda Y (2002) Splay Fault branching along the Nankai subduction zone. Science 297:1157–1160

    Article  CAS  Google Scholar 

  57. Pelayo AM, Wiens DA (1990) The November 20, 1960 Peru tsunami earthquake: Source mechanism of a slow event. Geophys Res Lett 17:661–664

    Article  Google Scholar 

  58. Pelayo AM, Wiens DA (1992) Tsunami earthquakes – Slow thrust‐faulting events in the accretionary wedge. J Geophys Res 97:15321–15337

    Article  Google Scholar 

  59. Polet J, Kanamori H (2000) Shallow subduction zone earthquakes and their tsunamigenic potential. Geophys J Int 142:684–702. doi:10.1046/j.1365-246x.2000.00205.x

    Article  Google Scholar 

  60. Polet J, Thio HK (2003) The 1994 Java Tsunami earthquake and its “Normal” Aftershocks. Geophys Res Lett 30:27–1. doi:10.1029/2002GL016806

    Article  Google Scholar 

  61. Robinson DP, Das S, Watts AB (2006) Earthquake rupture stalled by a subducting fracture zone. Science 312:1203–1205. doi:10.1126/science.1125771

    Article  CAS  Google Scholar 

  62. Satake K (1994) Mechanics of the 1992 Nicaragua tsunami earthquake. Geophys Res Lett 21:2519–2522

    Article  Google Scholar 

  63. Satake K, Kanamori H (1991) Abnormal tsunamis caused by the June 13, 1984, Torishima, Japan, earthquake. J Geophys Res 96:19933–19939

    Article  Google Scholar 

  64. Satake K, Tanioka Y (1999) Sources of tsunami and tsunamigenic earthquakes in subduction zones. Pure Appl Geophys 154:467–483. doi:10.1007/s000240050240

    Article  Google Scholar 

  65. Scholz CH (1990) The mechanics of earthquakes and faulting. Cambridge Univ Press, New York

    Google Scholar 

  66. Scholz CH (1998) Earthquakes and friction laws. Nature 391:37–42

    Article  CAS  Google Scholar 

  67. Scholz CH, Small C (1997) The effect of seamount subduction on seismic coupling. Geol 25:487–490

    Article  Google Scholar 

  68. Seno T (2002) Tsunami earthquakes as transient phenomena. Geophys Res Lett 29(10):58.1–58.4. doi:10.1029/2002GL014868

    Article  Google Scholar 

  69. Seno T, Hirata K (2007) Did the 2004 Sumatra–Andaman earthquake involve a component of tsunami earthquakes? Bull Seismol Soc Am 97:S296–S306. doi:10.1785/0120050615

    Article  Google Scholar 

  70. Shapiro NM, Singh SK, Pacheco J (1998) A fast and simple diagnostic method for identifying tsunamigenic earthquakes. Geophys Res Lett 25:3911–3914

    Article  Google Scholar 

  71. Shimazaki K, Geller RJ (1977) Source process of the Kurile Islands tsunami earthquake of June 10, 1975. Eos Trans Am Geophys Union 58:446

    Google Scholar 

  72. Song Y, Fu L, Zlotnicki V, Ji C, Hjorleifsdottir V, Shum C, Yi Y (2006) Horizontal motions of faulting dictate the 26 December 2004 tsunami genesis. Eos Trans AGU 87(52):Fall Meet Suppl, Abstract U53C-02

    Google Scholar 

  73. Synolakis CE, Bardet JP, Borrero JC, Davies HL, Okal EA, Silver EA, Sweet S, Tappin DR (2002) The slump origin of the 1998 Papua New Guinea Tsunami. Proc Royal Soc A Math Phys Eng Sci 458(2020):763–789. doi:10.1098/rspa.2001.0915

    Article  Google Scholar 

  74. Synolakis CE, Imamura F, Tsuji Y, Matsutomi H, Tinti S, Cook B, Chandra YP, Usman M (1995) Damage, conditions of East Java tsunamis of 1994 analyzed. EOS 76:26

    Article  Google Scholar 

  75. Tanioka Y, Ruff L, Satake K (1997) What controls the lateral variation of large earthquake occurrence along the Japan trench. Isl Arc 6:261–266

    Article  Google Scholar 

  76. Tanioka Y, Satake K (1996) Fault parameters of the 1896 Sanriku tsunami earthquake estimated from tsunami numerical modeling. Geophys Res Lett 23:1549–1552

    Article  Google Scholar 

  77. Tanioka Y, Satake K (1996) Tsunami generation by horizontal displacement of ocean bottom. Geophys Res Lett 23:861–864

    Article  Google Scholar 

  78. Tanioka Y, Seno T (2001) Detailed analysis of tsunami waveforms generated by the 1946 Aleutian tsunami earthquake. Nat Haz Earth Syst Sci 1:171–175

    Article  Google Scholar 

  79. Tanioka Y, Seno T (2001) Sediment effect on tsunami generation of the 1896 Sanriku tsunami earthquake. Geophys Res Lett 28:3389–3392

    Article  Google Scholar 

  80. Taylor MAJ, Zheng G, Rice JR, Stuart WD, Dmowska R (1996) Cyclic stressing and seismicity at strong coupled subduction zones. J Geophys Res 101:8363–8381

    Article  Google Scholar 

  81. Tsuboi S (2000) Application of M wp to tsunami earthquake. Geophys Res Lett 27:3105–3108

    Article  Google Scholar 

  82. Tsuji Y, Imamura F, Matsutomi H, Synolakis CE, Nanang PT, Jumadi, Harada S, Han SS, Arai K, Cook B (1995) Field survey of the east Java earthquake and tsunami of June 3, 1994. Pure Appl Geophys 144(3–4):839–854

    Article  Google Scholar 

  83. Venkataraman A, Kanamori H (2004) Observational constraints on the fracture energy of subduction zone earthquakes. J Geophys Res 109:B05302.1–05302.20. doi:10.1029/2003JB002549

    Google Scholar 

  84. Wang K, He J (2008) Effects of frictional behavior and geometry of subduction fault on coseismic seafloor deformation. Bull Seismol Soc Am 98(2):571–579

    Article  Google Scholar 

  85. Ward SN (2002) Tsunamis. In: Meyers RA (ed) The Encyclopedia of Physical Science and Technology, vol 17. Academic Press, San Diego, pp 175–191

    Google Scholar 

  86. Wiens D (1989) Bathymetric effects on body waveforms from shallow subduction zone earthquakes and application to seismic processes in the Kurile Trench. J Geophys Res 94:2955–2972

    Article  Google Scholar 

Books and Reviews

  1. Bebout G, Kirby S, Scholl D, Platt J (eds) (1996) Subduction from Top to Bottom. American Geophysical Union Monograph, no 96. American Geophysical Union, Washington DC

    Google Scholar 

  2. Satake K, Imamura F (1995) Tsunamis 1992–1994. Special Issue of Pure Appl Geophys 144(3–4):373–890

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag

About this entry

Cite this entry

Polet, J., Kanamori, H. (2011). Tsunami Earthquakes . In: Meyers, R. (eds) Extreme Environmental Events. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-7695-6_51

Download citation

Publish with us

Policies and ethics