Skip to main content

Seismic Waves in Heterogeneous Earth, Scattering of

  • Reference work entry
Extreme Environmental Events

Article Outline

Glossary

Definition of the Subject

Introduction

Radiative Transfer Theory for a Scattering Medium

Wave Envelopes in Random Media and Statistical Characterization

Envelope Broadening of a High-Frequency Seismogram

Spatial Variation of Scattering Characteristics

Temporal Change in the Earth Medium Structure

Future Directions

Acknowledgments

Bibliography

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 599.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

Attenuation factor \({\boldsymbol{Q^{-1}}}\) :

A measure of attenuation characteristics of a medium caused by intrinsic absorption and scattering loss. The former means the transfer of vibration energy into heat and the latter means the transfer of vibration energy from the direct wave to coda waves caused by scattering due to medium heterogeneity.

Coda waves:

Wave trains that follow the arrival of the direct S‑wave phase are called S‑coda waves or simply coda waves. Coda waves are interpreted as a superposition of S waves scattered by distributed heterogeneities. Wave trains between direct P and S wave arrivals are called P‑coda waves.

Coda attenuation factor \({\boldsymbol{Q_\text{C}^{-1}}}\) :

This parameter characterizes the amplitude decay of S coda of a local earthquake with the lapse time increasing based on the S‑to‑S single scattering. The coda duration shortens for a larger coda attenuation factor.

Envelope broadening:

The source duration time of a microearthquake is short; however, the apparent duration time of the S‑wave seismogram increases with the travel distance increasing because of diffraction and scattering by medium heterogeneities. This phenomenon is called envelope broadening.

Radiative transfer theory:

A phenomenological theory that describes scattering process of wave energy in a scattering medium on the basis of causality, geometrical spreading and the energy conservation. It neglects the interference of waves but focuses on the intensity only. This theory admits various types of scattering patterns. It is often applied to model the energy propagation of high‐frequency seismic‐waves in heterogeneous Earth media.

Random media:

A mathematical model for media whose parameters are described by random functions of space coordinates. The stochastic properties of the ensemble of random media are characterized by their autocorrelation function or the power spectral density function.

Scattering coefficient \({\boldsymbol{g}}\) :

A measure of the scattering power in a unit solid angle at a certain direction by a unit volume of heterogeneous media for the incidence of unit energy flux density. The average of g over the solid angle gives the total scattering coefficient g 0, of which the reciprocal gives the mean free path. This quantity characterizes the coda excitation and the scattering loss in the heterogeneous media.

Bibliography

  1. Aki K (1969) Analysis of seismic coda of local earthquakes as scattered waves. J Geophys Res 74:615–631

    Article  Google Scholar 

  2. Aki K (1973) Scattering of P waves under the Montana LASA. J Geophys Res 78:1334–1346

    Article  Google Scholar 

  3. Aki K (1980) Attenuation of shear-waves in the lithosphere for frequencies from 0.05 to 25 Hz. Phys Earth Planet Inter 21:50–60

    Article  Google Scholar 

  4. Aki K, Chouet B (1975) Origin of coda waves: Source, attenuation and scattering effects. J Geophys Res 80:3322–3342

    Article  Google Scholar 

  5. Asano Y, Hasegawa A (2004) Imaging the fault zones of the 2000 western Tottori earthquake by a new inversion method to estimate three‐dimensional distribution of the scattering coefficient. J Geophys Res 109:B06306. doi:10.1029/2003JB002761

    Article  Google Scholar 

  6. Atkinson GM (1993) Notes on ground motion parameters for Eastern North America: Duration and H/V ratio. Bull Seismol Soc Am 83:587–596

    Google Scholar 

  7. Campillo M, Paul A (2003) Long-Range Correlations in the Diffuse Seismic Coda. Science 299:547–549. doi:10.1126/science.1078551

    Article  CAS  Google Scholar 

  8. Chandrasekhar S (1960) Radiative Transfer. Dover, New York

    Google Scholar 

  9. Dainty AM, Toksöz MN (1981) Seismic codas on the earth and the moon: A comparison. Phys Earth Planet Inter 26:250–260

    Google Scholar 

  10. Fehler M, Hoshiba M, Sato H, Obara K (1992) Separation of scattering and intrinsic attenuation for the Kanto-Tokai region, Japan, using measurements of S-wave energy versus hypocentral distance. Geophys J Int 108:787–800

    Article  Google Scholar 

  11. Fehler M, Sato H, Huang LJ (2000) Envelope broadening of outgoing waves in 2-D random media: A comparison between the Markov approximation and numerical simulations. Bull Seismol Soc Amer 90:914–928

    Article  Google Scholar 

  12. Flatté SM, Wu RS (1988) Small-scale structure in the lithosphere and asthenosphere deduced from arrival time and amplitude fluctuations at NORSAR. J Geophys Res 93:6601–6614

    Google Scholar 

  13. Foldy LL (1945) The multiple scattering of waves- I General theory of isotropic scattering by randomly distributed scatterers. Phys Rev 67:107–119

    Article  Google Scholar 

  14. Frankel A, Clayton RW (1986) Finite difference simulations of seismic scattering: Implications for the propagation of short‐period seismic waves in the crust and models of crustal heterogeneity. J Geophys Res 91:6465–6489

    Article  Google Scholar 

  15. Frankel A, Wennerberg L (1987) Energy‐flux model of seismic coda: Separation of scattering and intrinsic attenuation. Bull Seismol Soc Am 77:1223–1251

    Google Scholar 

  16. Friedrich C, Wegler U (2005) Localization of seismic coda at Merapi volcano (Indonesia). Geophys Res Lett 32:L14312. doi:10.1029/2005GL023111

    Article  Google Scholar 

  17. Furumura T, Kennett BLN (2005) Subduction zone guided waves and the heterogeneity structure of the subducted plate: intensity anomalies in northern Japan. J Geophys Res 110:B10302. doi:10.1029/2004JB003486

    Article  Google Scholar 

  18. Goff JA, Holliger K (2002) Heterogeneity in the Crust and Upper Mantle – Nature, Scaling and Seismic Properties. Kluwer Academic/Plenum Publishers, Dorderecht, pp 1–358

    Google Scholar 

  19. Gusev AA (1995) Baylike and continuous variations of the relative level of the late coda during 24 years of observation on Kamchatka. J Geophys Res 100:20311–20319

    Article  Google Scholar 

  20. Gusev AA (1995) Vertical profile of turbidity and coda Q. Geophys J Int 123:665–672

    Article  Google Scholar 

  21. Gusev AA, Abubakirov IR (1987) Monte-Carlo simulation of record envelope of a near earthquake. Phys Earth Planet Inter 49:30–36

    Article  Google Scholar 

  22. Gusev AA, Abubakirov IR (1996) Simulated envelopes of non‐isotropically scattered body waves as compared to observed ones: Another manifestation of fractal heterogeneity. Geophys J Int 127:49–60

    Article  Google Scholar 

  23. Gusev AA, Lemzikov VK (1985) Properties of scattered elastic waves in the lithosphere of Kamchatka: Parameters and temporal variations. Tectonophysics 112:137–153

    Article  Google Scholar 

  24. Hemmer PC (1961) On a generalization of Smoluchowski's diffusion equation. Physica A 27:79–82

    CAS  Google Scholar 

  25. Hiramatsu Y, Hayashi N, Furumoto M (2000) Temporal changes in coda Q21 and b value due to the static stress change associated with the 1995 Hyogo-ken Nanbu earthquake. J Geophys Res 105:6141–6151

    Article  Google Scholar 

  26. Holliger K, Levander A (1992) A stochastic view of lower crustal fabric based on evidence from the Ivrea zone. Geophys Res Lett 19:1153–1156

    Article  Google Scholar 

  27. Hoshiba M (1991) Simulation of multiple‐scattered coda wave excitation based on the energy conservation law. Phys Earth Planet Inter 67:123–136

    Article  Google Scholar 

  28. Hoshiba M, Sato H, Fehler M (1991) Numerical basis of the separation of scattering and intrinsic absorption from full seismogram envelope – A Monte-Carlo simulation of multiple isotropic scattering. Pa Meteorol Geophys, Meteorol Res Inst 42:65–91

    Article  Google Scholar 

  29. Ishimaru A (1978) Wave Propagation and Scattering in Random Media, vol 1 and 2. Academic, San Diego

    Google Scholar 

  30. Jin A, Aki K (1986) Temporal change in coda Q before the Tangshan earthquake of 1976 and the Haicheng earthquake of 1975. J Geophys Res 91:665–673

    Article  Google Scholar 

  31. Jin A, Aki K (1988) Spatial and temporal correlation between coda Q and seismicity in China. Bull Seismol Soc Am 78:741–769

    Google Scholar 

  32. Jin A, Aki K (1989) Spatial and temporal correlation between coda Q \({^{-1}}\) and seismicity and its physical mechanism. J Geophys Res 94:14041–14059

    Article  Google Scholar 

  33. Jin A, Aki K (2005) High‐resolution maps of Coda Q in Japan and their interpretation by the brittle‐ductile interaction hypothesis. Earth Planets Space 57:403–409

    Google Scholar 

  34. Korn M (1990) A modified energy flux model for lithospheric scattering of teleseismic body waves. Geophys J Int 102:165–175

    Article  Google Scholar 

  35. Korn M (1993) Determination of site‐dependent scattering Q from P-wave coda analysis with an energy‐flux model. Geophys J Int 113:54–72

    Article  Google Scholar 

  36. Korn M, Sato H (2005) Synthesis of plane vector‐wave envelopes in 2-D random elastic media based on the Markov approximation and comparison with finite difference simulations. Geophys J Int 161:839–848

    Article  Google Scholar 

  37. Kubanza M, Nishimura T, Sato H (2006) Spatial variation of lithospheric heterogeneity on the globe as revealed from transverse amplitudes of short‐period teleseismic P-waves. Earth Planets Space 58:45–e48

    Google Scholar 

  38. Langston CA (1979) Structure under Mount Rainer, Washington, inferred from teleseismic body waves. J Geophys Res 84:4749–4762

    Article  Google Scholar 

  39. Larose E, Margerin L, van Tiggelen BA, Campillo M (2004) Weak Localization of Seismic Waves. Phys Rev Lett 93:048501-4. doi:10.1103/PhysRevLett.93.048501

    Article  CAS  Google Scholar 

  40. Lee WS, Sato H, Lee KW (2003) Estimation of S-wave scattering coefficient in the mantle from envelope characteristics before and after the ScS arrival. Geophys Res Lett 30:2248. doi:10.1029/2003GL018413

    Article  Google Scholar 

  41. Margerin L (2005) Introduction to radiative transfer of seismic waves. In: Levander A, Nolet G (eds) Seismic Earth: Array Analysis of Broad-band Seismograms, Geophysical Monograph Series, vol 157, chap 14. AGU, Washington, pp 229–252

    Google Scholar 

  42. Margerin L, Campillo M, van Tiggelen BA (2001) Coherent backscattering of acoustic waves in the near field. Geophys J Int 145:593–603

    Article  Google Scholar 

  43. Margerin L, Nolet G (2003) Multiple scattering of high‐frequency seismic waves in the deep Earth: PKP precursor analysis and inversion for mantle granularity. J Geophys Res 108, B11:2514. doi:10.1029/2003JB002455

  44. Matsumoto S (2005) Scatterer density estimation in the crust by seismic array processing. Geophys J Int 163:622–628

    Article  Google Scholar 

  45. Matsumoto S, Obara K, Hasegawa A(1998) Imaging P-wave scatterer distribution in the focal area of the 1995 M7.2 Hyogo-ken Nanbu (Kobe) Earthquake. Geophys Res Lett 25:1439–1442

    Article  Google Scholar 

  46. Mikada H,Watanabe H, Sakashita S (1997) Evidence for subsurface magma bodies beneath Izu‐Oshima volcano inferred from a seismic scattering analysis and possible interpretation of the magma plumbing system of the 1986 eruptive activity. Phys Earth Planet Inter 104:257–269

    Article  Google Scholar 

  47. Nakahara H, Nishimura T, Sato H, Ohtake M (1998) Seismogram envelope inversion for the spatial distribution of high‐frequency energy radiation from the earthquake fault: Application to the 1994 far east off Sanriku earthquake, Japan. J Geophys Res 103:855–867

    Article  Google Scholar 

  48. Nishigami K (1991) A new inversion method of coda waveforms to determine spatial distribution of coda scatterers in the crust and uppermost mantle. Geophys Res Lett 18:2225–2228

    Article  Google Scholar 

  49. Nishigami K (2000) Deep crustal heterogeneity along and around the San Andreas fault system in central California and its relation to the segmentation. J Geophys Res 105:7983–7998

    Article  Google Scholar 

  50. Nishimura T, Fehler M, Baldridge WS, Roberts P, Steck L (1997) Heterogeneous structure around the Jemez Volcanic Field, New Mexico, USA, as inferred from the envelope inversion of active‐experiment seismic data. Geophys J Int 131:667–681

    Article  Google Scholar 

  51. Nishimura T, Tanaka S, Yamawaki T, Yamamoto H, Sano T, Sato M, Nakahara H, Uchida N, Hori S, Sato H (2005) Temporal changes in seismic velocity of the crust around Iwate volcano, Japan, as inferred from analyses of repeated active seismic experiment data from 1998 to 2003. Earth Planets Space 57:491–505

    Google Scholar 

  52. Nishimura T, Yoshimoto K, Ohtaki T, Kanjo K, Purwana I (2002) Spatial distribution of lateral heterogeneity in the upper mantle around the western Pacific region as inferred from analysis of transverse components of teleseismic P-coda. Geophys Res Lett 29:2089–2137. doi:10.1029/2002GL015606

    Article  Google Scholar 

  53. Obara K, Sato H (1995) Regional differences of random inhomogeneities around the volcanic front in the Kanto-Tokai area, Japan, revealed form the broadening of S wave seismogram envelopes. J Geophys Res 100:2103–2121

    Article  Google Scholar 

  54. Paaschens JCJ (1997) Solution of the time‐dependent Boltzmann equation. Phys Rev E 56:1135–1141

    Article  Google Scholar 

  55. Petukhin AG, Gusev AA (2003) The Duration‐distance Relationship and Average Envelope Shapes of Small Kamchatka Earthquakes. Pure Appl Geophys 160:1717–1743

    Google Scholar 

  56. Phillips WS, Aki K (1986) Amplification of coda waves from local earthquakes in Central California. Bull Seismol Soc 76:627–648

    Google Scholar 

  57. Poupinet G, Ellsworth WL, Frechet J (1984) Monitoring velocity variations in the crust using earthquake doublets: An application to the Calaveras fault, California. J Geophys Res 89:5719–5731

    Article  Google Scholar 

  58. Przybilla J, Korn M, Wegler U (2006) Radiative transfer of elastic waves versus finite difference simulations in two‐dimensional random media. J Geophys Res 111:B04305. doi:10.1029/2005JB003952

    Article  Google Scholar 

  59. Revenaugh J (1995) A scattered‐wave image of subduction beneath the Transverse Ranges. Science 268:1888–1892

    Article  CAS  Google Scholar 

  60. Revenaugh J (1995) Relationship of the 1992 Landers, California, earthquake sequence to seismic scattering. Science 270:1344–1347

    Article  CAS  Google Scholar 

  61. Revenaugh J (1999) Geologic Applications of Seismic Scattering. Annu Rev Earth Planet Sci 27:55–73

    Article  CAS  Google Scholar 

  62. Rondenay S, Bostock MG, Shragge J (2001) Multiparameter two‐dimensional inversion of scattered teleseismic body waves 3. Application to the Cascadia 1993 data set. J Geophys Res 106:30795–30807

    Article  Google Scholar 

  63. Rytov SM, Kravtsov YA, Tatarskii VI (1987) Principles of Statistical Radio Physics, vol 4, Wave Propagation Through Random Media. Springer, Berlin

    Google Scholar 

  64. Ryzhik LV, Papanicolaou GC, Keller JB (1996) Transport equations for elastic and other waves in random media. Wave Motion 24:327–370

    Article  Google Scholar 

  65. Saito T (2006) Synthesis of scalar‐wave envelopes in two‐dimensional weakly anisotropic random media by using the Markov approximation. Geophys J Int 165:501–515. doi:10.1111/j.1365-246X2006.02896.x

    Article  Google Scholar 

  66. Saito T, Sato H, Ohtake M (2002) Envelope broadening of spherically outgoing waves in three‐dimensional random media having power-law spectra. J Geophys Res 107:2089. doi:10.1029/2001JB000264

    Article  Google Scholar 

  67. Sato H (1977) Single isotropic scattering model including wave conversions: Simple theoretical model of the short period body wave propagation. J Phys Earth 25:163–176

    Google Scholar 

  68. Sato H (1984) Attenuation and envelope formation of three‐component seismograms of small local earthquakes in randomly inhomogeneous lithosphere. J Geophys Res 89:1221–1241

    Article  Google Scholar 

  69. Sato H (1987) A precursor‐like change in coda excitation before the western Nagano earthquake (Ms = 6.8) of 1984 in central Japan. J Geophys Res 92:1356–1360

    Article  Google Scholar 

  70. Sato H (1989) Broadening of seismogram envelopes in the randomly inhomogeneous lithosphere based on the parabolic approximation: Southeastern Honshu, Japan. J Geophys Res 94:17735–17747

    Article  Google Scholar 

  71. Sato H (1990) Unified approach to amplitude attenuation and coda excitation in the randomly inhomogeneous lithosphere. Pure Appl Geophys 132:93–121

    Article  Google Scholar 

  72. Sato H (2006) Synthesis of vector wave envelopes in three‐dimensional random elastic media characterized by a Gaussian autocorrelation function based on the Markov approximation: Plane wave case. J Geophys Res 111:B06306. doi:10.1029/2005JB004036

    Article  Google Scholar 

  73. Sato H (2007) Synthesis of vector‐wave envelopes in 3-D random elastic media characterized by a Gaussian autocorrelation function based on the Markov approximation: Spherical wave case. J Geophys Res Solid Earth 112:B01301. doi:10.1029/2006JB004437

    Article  Google Scholar 

  74. Sato H, Fehler M (1998) Seismic Wave Propagation and Scattering in the Heterogeneous Earth. AIP Press/Springer, New York

    Google Scholar 

  75. Sato H, Nakahara H, Ohtake M (1997) Synthesis of scattered energy density for non‐spherical radiation from a point shear dislocation source based on the radiative transfer theory. Phys Earth Planet Inter 104:1–281

    Article  Google Scholar 

  76. Sawazaki K, Sato H, Nakahara H, Nishimura T (2006) Temporal Change in Site Response Caused by Earthquake Strong Motion as Revealed from Coda Spectral Ratio Measurement. Geophys Res Lett 33:L21303. doi:10.1029/2006GL027938

    Article  Google Scholar 

  77. Shang T, Gao L (1988) Transportation theory of multiple scattering and its application to seismic coda waves of impulsive source. Sci Sin 31B:1503–1514

    Google Scholar 

  78. Shapiro SA, Hubral P (1999) Elastic Waves in Random Media – Fundamentals of Seismic Stratigraphic Filtering. Springer, Berlin

    Google Scholar 

  79. Shearer PM, Earle PS (2004) The global short‐period wavefield modeled with a Monte Carlo seismic phonon method. Geophys J Int 158:1103–1117

    Article  Google Scholar 

  80. Shiomi K, Sato H, Ohtake M (1997) Broad-band power-law spectra of well-log data in Japan. Geophys J Int 130:57–64

    Article  Google Scholar 

  81. Snieder R, Gret A, Douma A, Scales J (2002) Coda wave interferometry for estimating nonlinear behavior in seismic elocity. Science 295:2253–2255

    Article  CAS  Google Scholar 

  82. Sreenivasiah I, Ishimaru A, Hong ST (1976) Two‐frequency mutual coherence function and pulse propagation in a random medium: An analytic solution to the plane wave case. Radio Sci 11:775–778

    Article  Google Scholar 

  83. Takahashi T, Sato H, Nishimura T, Obara K (2006) Strong inhomogeneity beneath Quaternary volcanoes revealed from the peak delay analysis of S-wave seismograms of microearthquakes in northeastern, Japan. Geophys J Int 168:90–99. doi:10.1111/j.1365-246X2006.03197.x

    Article  Google Scholar 

  84. Wegler U, Sens‐Schönfelder C (2007) Fault zone monitoring with passive image interferometry. Geophys J Int 168:1029-1033. doi:10.1111/j.1365-246X2006.03284.x

    Google Scholar 

  85. Wu RS (1985) Multiple scattering and energy transfer of seismic waves – separation of scattering effect from intrinsic attenuation – I Theoretical modeling. Geophys J R Astron Soc 82:57–80

    Google Scholar 

  86. Wu RS, Maupin V (eds) (2007) Advances in Wave Propagation in Heterogeneous Earth. In: Dmowska R (ed) Advanced in Geophysics, vol 48. Academic Press, San Diego, pp 561–596

    Google Scholar 

  87. Yomogida K, Benites R (1995) Relation between direct wave Q and coda Q: A numerical approach. Geophys J Int 123:471–483

    Article  Google Scholar 

  88. Yoshimoto K (2000) Monte-Carlo simulation of seismogram envelope in scattering media. J Geophys Res 105:6153–6161

    Article  Google Scholar 

  89. Yoshimoto K, Sato H, Ohtake M (1993) Frequency‐dependent attenuation of P and S waves in the Kanto area, Japan, based on the coda‐normalization method. Geophys J Int 114:165–174

    Article  Google Scholar 

  90. Yoshimoto K, Sato H, Ohtake M (1997) Short‐wavelength crustal inhomogeneities in the Nikko area, central Japan, revealed from the three‐component seismogram envelope analysis. Phys Earth Planet Inter 104:63–73

    Article  Google Scholar 

  91. Yoshimoto K, Wegler U, Korn M (2006) A volcanic front as a boundary of seismic attenuation structures in northeastern Honshu, Japan. Bull Seismol Soc Am 96:637–646

    Article  Google Scholar 

  92. Zeng Y, Su F, Aki K (1991) Scattering wave energy propagation in a random isotropic scattering medium I Theory. J Geophys Res 96:607–619

    Article  Google Scholar 

  93. Zhao D, Hasegawa A, Horiuchi S (1992) Tomographic imaging of P and S wave velocity structure beneath Northeastern Japan. J Geophys Res 97:19909–19928

    Article  Google Scholar 

Download references

Acknowledgments

The author thanks Michael Korn, Heiner Igel, and an anonymous reviewer. Their comments were helpful for improving the readability. The author is grateful to NIED, Japan for providing digital seismic data.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag

About this entry

Cite this entry

Sato, H. (2011). Seismic Waves in Heterogeneous Earth, Scattering of. In: Meyers, R. (eds) Extreme Environmental Events. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-7695-6_42

Download citation

Publish with us

Policies and ethics