Skip to main content

Percolation , and Faults and Fractures in Rock

  • Reference work entry
  • 1305 Accesses

Article Outline

Glossary

Definition of the Subject

Introduction

Fracture Networks

Percolation of Fracture Networks

Determination of the Dimensionless Density from Experimental Data

Role of the Dimensionless Density in Other Geometrical Properties and Permeability

Future Directions

Bibliography

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   599.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Abbreviations

Dimensionless density:

The dimensionless density is the number of objects per excluded volume.

Excluded volume:

The excluded volume V ex of an object is defined as the volume surrounding it, in which the center of another object must be in order for them to intersect.

Fracture network:

A fracture network is generally defined as a set of individual fractures which may or may not intersect.

Percolation and percolation threshold:

Percolation is defined as the existence of a spanning connected cluster in the fracture network. Percolation occurs when the number of fractures per unit volume is equal or larger than a certain value called the percolation threshold.

Plane convex fractures:

A plane fracture is convex if for any points A and B which belong to the fracture, all the points of the segment AB belong to the fracture.

Bibliography

Primary Literature

  1. Adler PM (1992) Porous Media: Geometry and Transports. Butterworth/Heinemann, Stoneham

    Google Scholar 

  2. Adler PM, Thovert J-F (1999) Fractures and fracture networks. Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  3. Alon U, Balberg I, Drory A (1991) New, heuristic, percolation criterion for continuum systems. Phys Rev Lett 66:2879–2882

    Article  Google Scholar 

  4. Balberg I (1985) Universal percolation threshold limits in the continuum. Phys Rev B31:4053–4055

    Article  Google Scholar 

  5. Balberg I (1987) Recent developments in continuum percolation. Phil Mag B56:991–1003

    Article  CAS  Google Scholar 

  6. Balberg I, Anderson CH, Alexander S, Wagner N (1984) Excluded volume and its relation to the onset of percolation. Phys Rev B30:3933–3943

    Article  Google Scholar 

  7. Barenblatt GI, Zheltov IP, Kochina IN (1960) Basic concepts in the theory of seepage of homogeneous liquids in fissured rocks. Soviet Appl Math Mech (PMM) 24:852–864

    Google Scholar 

  8. Berkowitz B, Adler PM (1998) Stereological analysis of fracture network structure in geological formations. J Geophys Res B103:15339–15360

    Article  Google Scholar 

  9. Berkowitz B, Ewing RP (1998) Percolation theory and network modeling applications in soil physics. Survey Geophys 19:23–72

    Google Scholar 

  10. Bogdanov I, Mourzenko VV, Thovert J-F, Adler PM (2003) Effective permeability of fractured porous media in steady state flow. Water Resour Res 39. doi:10.1029/2001WR000756

    Google Scholar 

  11. Bour O, Davy P (1997) Connectivity of random fault networks following a power law fault length distribution. Water Resours Res 33:1567–1583

    Article  Google Scholar 

  12. Charlaix E, Guyon E, Rivier N (1984) A criterion for percolation threshold in a random array of plates. Solid State Commun 50:999–1002

    Article  Google Scholar 

  13. Conrad F, Jacquin C (1973) Représentation d'un réseau bidimensionnel de fractures par un modéle probabiliste. Application au calcul des grandeurs géométriques des blocs matriciels. Rev IFP 28:843–890

    Google Scholar 

  14. Drory A, Berkowitz B, Parisi G, Balberg I (1997) Theory of continuum percolation. III. Low-density expansion. Phys Rev E56:1379–1395

    Google Scholar 

  15. Florian R, Neda Z (2001) Improved percolation thresholds for rods in three-dimensional boxes. oai:arXiv.org:cond-mat/0110067

    Google Scholar 

  16. Garboczi EJ, Snyder KA, Douglas JF, Thorpe MF (1995) Geometrical percolation threshold of overlapping ellipsoids. Phys Rev E 52:819–828

    Article  CAS  Google Scholar 

  17. Gonzalez Garcia R, Huseby O, Thovert J-F, Ledésert B, Adler PM (2000) Three-dimensional characterization of fractured granite and transport properties. J Geophys Res 105(B)21387–21401

    Google Scholar 

  18. Huseby O, Thovert J-F, Adler PM (1997) Geometry and topology of fracture systems. J Phys A30:1415–1444

    Article  Google Scholar 

  19. Isihara A (1950) Determination of molecular shape by osmotic measurement. J Chem Phys 18:1446–1449

    Article  Google Scholar 

  20. Koudina N, Gonzalez Garcia R, Thovert J-F, Adler PM (1998) Permeability of three-dimensional fracture networks. Phys Rev E 57:4466–4479

    Article  CAS  Google Scholar 

  21. Ledésert B, Dubois J, Velde B, Meunier A, Genter A, Badri A (1993) Geometrical and fractal analysis of a three-dimensional hydrothermal vein network in a fractured granite. J Volcanol Geotherm Res 56:267–280

    Google Scholar 

  22. Long JCS, Remer JS, Wilson CR, Witherspoon PA (1982) Porous media equivalents for networks of discontinuous fractures. Water Resour Res 18:645–658

    Article  Google Scholar 

  23. Mourzenko V, Thovert J-F, Adler PM (2004) Macroscopic permeability of three dimensional fracture networks with power law size distribution. Phys Rev E 69:066307

    Article  CAS  Google Scholar 

  24. Mourzenko V, Thovert J-F, Adler PM (2004) Percolation of three-dimensional fracture networks with power-law size distribution. Phys Rev E 72:036103

    Article  Google Scholar 

  25. Odling NE (1997) Scaling and connectivity of joint systems in sandstones from western Norway. J Struct Geol 19:1257–1271

    Article  Google Scholar 

  26. Piggott AR (1997) Fractal relations for the diameter and trace length of disc-shaped fractures. J Geophys Res 102(B):18121–18125

    Article  Google Scholar 

  27. Pike GE, Seager CH (1974) Percolation and conductivity: A computer study. I. Phys Rev B10:1421–1434

    Google Scholar 

  28. Rivier N, Guyon E, Charlaix E (1985) A geometrical approach to percolation through random fractured rocks. Geol Mag 122:157–162

    Article  Google Scholar 

  29. Robinson PC (1983) Connectivity of fracture systems - A percolation theory approach. J Phys A16:605–614

    Article  Google Scholar 

  30. Robinson PC (1984) Numerical calculations of critical densities for lines and planes. J Phys A17:2823–2830

    Article  Google Scholar 

  31. Saar MO, Manga M (2002) Continuum percolation for randomly oriented soft-core prisms. Phys Rev E 65:056131

    Article  Google Scholar 

  32. Sahimi M (1995) Flow and transport in porous media and fractured rocks. VCH, Weinheim

    Google Scholar 

  33. Sahimi M, Yortsos TL (1990) Applications of Fractal Geometry to Porous Media: A review. Society of Petroleum Engineers. Paper 20476

    Google Scholar 

  34. Santalo LA (1943) Sobre la distribution probable de corpusculos en un cuerpo, deducida de la distribution en sus secciones y problema analogos. Rev Unión Mat Argent 9:145–164

    Google Scholar 

  35. Sher H, Zallen R (1970) Critical density in percolation processes. J Chem Phys 53:3759–3761

    Article  Google Scholar 

  36. Sisavath S, Mourzenko V, Genthon P, Thovert J-F, Adler PM (2004) Geometry, percolation and transport properties of fracture networks derived from line data. Geophys J Int 157:917–934

    Google Scholar 

  37. Stauffer D, Aharony A (1994) Introduction to Percolation Theory, 2nd edn. Taylor and Francis, Bristol

    Google Scholar 

  38. Thovert J-F, Adler PM (2005) Trace analysis for fracture networks of any convex shape. Geophys Res Lett 31:L22502

    Article  Google Scholar 

  39. Warburton PM (1980a) A stereological interpretaion of joint trace data. Int J Rock Mech Min Sci Geomech Abstr 17:181–190

    Article  Google Scholar 

  40. Warburton PM (1980b) Stereological interpretation of joint trace data: Influence of joint shape and implication for geological surveys. Int J Rock Mech Min Sci Geomech Abstr 17:305–316

    Google Scholar 

Books and Reviews

  1. Bear J, Tsang C-F, de Marsily G (1993) Flow and contaminant transport in fractured rock. Academic Press, San Diego

    Google Scholar 

  2. Myer LR, Tsang CF, Cook NGW, Goodman RE (1995) Fractured and jointed rock masses. Balkema, Rotterdam

    Google Scholar 

  3. van Golf-Racht TD (1982) Fundamentals of fractured reservoir engineering. Developments in Petroleum Science, vol 12. Elsevier, Amsterdam

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag

About this entry

Cite this entry

Adler, P.M., Thovert, JF., Mourzenko, V.V. (2011). Percolation , and Faults and Fractures in Rock . In: Meyers, R. (eds) Extreme Environmental Events. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-7695-6_38

Download citation

Publish with us

Policies and ethics