Skip to main content

GPS: Applications in Crustal Deformation Monitoring

  • Reference work entry
Extreme Environmental Events

Article Outline

Glossary

Definition of the Subject

Introduction

Global Positioning System Measurements

Applications of GPS Data to the Study of Seismic and Volcanic Hazards

Future Directions

Acknowledgments

Bibliography

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 599.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

Confidence ellipse:

As applied to a vector representing a displacement or velocity estimate, the confidence ellipse defines the region within which the value is estimated at or above a specified confidence level (e. g., 95%). Confidence ellipses are computed by propagation of errors when computing the position. The ellipse is usually plotted at the tip of a GPS vector (e. g., Fig. 9).

GNSS:

Global Navigation Satellite System. Although this acronym stands for the same phrase as GLONASS, GNSS is a generic term referring to space-based navigation systems like the Global Positioning System (GPS) operated by the U. S., Russia's GLONASS, and the Galileo system under development by the European Union.

Kinematic GPS:

A method of collecting GPS data in which the receiver is continuously or intermittently in motion. This receiver, called the rover, can receive corrections for ambiguity resolution and common errors from a nearby stationary receiver.

Interferometric synthetic aperture radar (InSAR):

A satellite‐based imaging technique in which the satellite emits a radar signal and measures the phase of the returning signal after it has been scattered off the surface of the Earth. The difference in phase of the scattered waves measured during two passes of the same satellite can be used to produce a map of deformation, called an interferogram, that occurred during the time between the two satellite passes.

International GNSS service (IGS):

An international consortium of agencies worldwide that provide data from permanent GPS and GLONASS sites in order to generate precise orbital and satellite clock parameters.

Ionosphere:

The electrically charged portion of the atmosphere from ∼60 km to ∼400 km above sea level. The ionosphere is dispersive, meaning that the degree to which it delays signal propagation depends on the signal's frequency and the electron content of the ionosphere.

Mega‐thrust earthquake:

A type of earthquake which causes rupture of a long portion of the interface between a subducting plate and the over‐riding plate. These earthquakes involve slip on a huge surface area, making them among the largest on Earth.

Moment magnitude (Mw):

A magnitude scale used to compare the energy released in earthquakes. The moment magnitude is computed from the seismic moment. Therefore, because Mw accounts for the full rupture length of the earthquake, the moment magnitude scale does not saturate for large events in the way that other magnitude scales do.

Reference frame:

A terrestrial reference frame is defined by a set of points on Earth whose coordinates are precisely determined in a coordinate system with a specified origin and orientation of the axes. In order to compare GPS site positions, displacements, or velocities they must all be transformed into the same reference frame. For GPS, the most commonly used reference frame is the International Terrestrial Reference Frame (ITRF) which is updated periodically.

Rupture:

The slip that occurs during an earthquake. This term is often used in discussing the way in which the slip progresses with time over the fault surface, as in “the rupture front propagated southeast.”

Satellite laser ranging (SLR):

A geodetic technique for measuring the position of points on the surface of the Earth. Observation stations emit pulses of light that bounce off retroreflectors on satellites and return to the stations. The stations record the travel time of the light which is used to calculate a range measurement.

Slip:

The distance that material on one side of a fault moves relative to that on the other side.

Stable North America:

The stable interior portion of the North American continent that is not affected by plate boundary deformation. Often this term is used in the context of a “stable North American” reference frame, meaning that GPS velocities are transformed so that the velocities at stations considered to be in the stable interior of the continent are essentially zero. Because of factors such as Glacial Isostatic Adjustment (GIA), even some GPS sites in the continental interior have nonzero velocities. These sites are typically omitted when defining a stable North American reference frame.

Strainmeter:

An instrument that is capable of measuring change in distance over short baselines. These instruments typically come in two forms. The first is installed at the Earth's surface and uses a laser interferometer to measure the changes in distance over baseline lengths of 100s of meters. The second type is installed in a borehole 100s of meters deep to measure subtle changes in the diameter of the borehole. Some borehole strainmeters measure volumetric strain (e. g. the Sacks–Evertson strainmeter) and others measure three independent components of horizontal strain (e. g. the Gladwin tensor strainmeter).

Strong motion seismograph:

Seismic instrument designed to record high‐amplitude shaking near an earthquake rupture. These instruments typically record acceleration, and are sometimes called accelerometers. Data recording is often triggered by the arrival of the first seismic waves, and these instruments can record acceleration several times that of gravity.

Teleseismic:

Refers to seismic waves recorded at distances greater than 3000 km from the epicenter.

Troposphere:

The portion of the atmosphere from the Earth's surface to ∼15 km which delays GPS signal propagation. The degree to which the GPS signal is delayed depends on the spatially and temporally varying atmospheric pressure and water vapor content.

Very long baseline interferometry (VLBI):

A geodetic positioning technique in which radio signals from distant sources such as quasars received at an array of antennas are used to calculate precise positions.

Bibliography

Primary Literature

  1. Ammon C, Ji C, Thio HK, Robinson D, Ni S, Hjorleifsdottir V, Kanamori H, Lay T, Das S, Helmberger D, Ichinose G, Polet J, Wald D (2005) Rupture process of the 2004 Sumatra‐Andaman earthquake. Science 308:1133–1139

    CAS  Google Scholar 

  2. Argus D, Gordon R (1991) No-net-rotation model of current plate velocities incorporating plate motion model NUVEL-1. Geophys Res Lett 18:2039–2042

    Google Scholar 

  3. Argus D, Gordon R, Ma C, Eanes R, Heflin M, Owen S, Willis P (2006) GEODVEL: Plate motions from space geodesy. Eos Trans AGU 87(52) Fall Meet Suppl:Abstract G41A-06

    Google Scholar 

  4. Argus D, Heflin M (1995) Plate motion and crustal deformation estimated with geodetic data from the Global Positioning System. Geophys Res Lett 22:1973–1976

    Google Scholar 

  5. Árnadóttir T, Jónsson S, Pollitz F, Jiang W, Feigl K (2005) Postseismic deformation following the June 2000 earthquake sequence in the south Iceland seismic zone. J Geophys Res 110:B12308; doi:10.1029/2005JB003701

  6. Banerjee P, Pollitz F, Bürgmann R (2005) The size and duration of the Sumatra–Andaman earthquake from far-field static offsets. Science 308:1769–1772

    Google Scholar 

  7. Banerjee P, Pollitz F, Nagarajan B, Bürgmann R (2007) Coseismic slip distributions of the 26 December 2004 Sumatra–Andaman and 28 March 2005 Nias earthquakes from GPS static offsets. Bull Seismol Soc Amer 97:S86–S102

    Google Scholar 

  8. Battaglia M, Segall P, Murray J, Cervelli P, Langbein J (2003) The mechanics of unrest at Long Valley caldera, California: 1. Modeling the geometry of the source using GPS, leveling and two-color EDM data. J Volc Geotherm Res 127:195–217

    CAS  Google Scholar 

  9. Battaglia M, Segall P, Roberts C (2003) The mechanics of unrest at Long Valley caldera, California: 2. Constraining the nature of the source using geodetic and micro‐gravity data. J Volc Geotherm Res 127:219–245

    CAS  Google Scholar 

  10. Bennett R, Davis J, Wernicke B (1996) First results from the northern Basin and Range continuous GPS network. Eos Trans AGU 77(46) Fall Meet Suppl:150

    Google Scholar 

  11. Bilek S, Satake K, Sieh K (2007) Introduction to the special issue on the 2004 Sumatra–Andaman earthquake and the Indian Ocean tsunami. Bull Seis Soc Amer 97:S1–S5

    Google Scholar 

  12. Bilham R, Engdahl R, Feldl N, Satyabala S (2005) Partial and complete rupture of the Indo-Andaman plate boundary 1847–2004. Seismol Res Lett 76:299–311

    Google Scholar 

  13. Blewitt G, Hammond WC, Kreemer C (2009) Geodetic observation of contemporary strain in the northern Walker Lane: 1, Semi‐permanent GPS strategy. In: Oldow JS, Cashman PH (eds) Late Cenozoic Structure and Evolution of the Great Basin – Sierra Nevada Transition. Geol Soc Amer (in press) doi:10.1130/2009.2447(1)

  14. Blewitt G, Kreemer C, Hammond W, Plag HP, Stein S, Okal E (2006) Rapid determination of earthquake magnitude using GPS for tsunami warning systems. Geophys Res Lett 33:L11309; doi:10.1029/2006GL026145

    Google Scholar 

  15. Bock Y, Nikolaidis R, de Jonge P, Bevis M (2000) Instantaneous geodetic positioning at medium distances with the Global Positioning System. J Geophys Res 105:28223–28253

    Google Scholar 

  16. Bos A, Usai S, Spakman W (2004) A joint analysis of GPS motions and InSAR to infer the coseismic surface deformation of the Izmit, Turkey earthquake. Geophys J Int 158:849–863

    Google Scholar 

  17. Bürgmann R, Kogan M, Steblov G, Hilley G, Levin V, Apel E (2005) Interseismic coupling and asperity distribution along the Kamchatka subduction zone. J Geophys Res 110:B07405; doi:10.1029/2005JB003648

  18. Bürgmann R, Rosen P, Fielding E (2000) Synthetic aperture radar interferometry to measure Earth's surface topography and its deformation. Ann Rev Earth Planet Sci 28:169–209

    Google Scholar 

  19. Calais E, Han JY, DeMets C, Nocquet JM (2006) Deformation of the North American plate interior from a decade of continuous GPS measurements. J Geophys Res 111:B06402; doi:10.1029/2005JB004253

    Google Scholar 

  20. Cervelli P, Fournier T, Freymueller J, Power J (2006) Ground deformation associated with the precursory unrest and early phases of the January 2006 eruption of Augustine Volcano, Alaska. Geophys Res Lett 33:L18304; doi:10.1029/2006GL027219

    Google Scholar 

  21. Cervelli P, Murray M, Segall P, Aoki Y, Kato T (2001) Estimating source parameters from deformation data, with an application to the March 1997 earthquake swarm off the Izu Peninsula, Japan. J Geophys Res 106:11217–11237

    Google Scholar 

  22. Cervelli P, Segall P, Johnson K, Lisowski M, Miklius A (2002) Sudden aseismic fault slip on the south flank of Kilauea volcano. Nature 415:1014–1018

    CAS  Google Scholar 

  23. Chen Q, Freymueller J, Wang Q, Yang Z, Xu C, Liu J (2004) A deforming block model for the present-day tectonics of Tibet. J Geophys Res 109:B01403; doi:10.1029/2002JB002151

    Google Scholar 

  24. Chlieh M, Avouac JP, Hjorleifsdottir V, Song TR, Ji C, Sieh K, Sladen A, Hebert H, Prawirodirdjo L, Bock Y, Galetzka J (2007) Coseismic slip and afterslip of the great Mw 9.15 Sumatra–Andaman earthquake of 2004. Bull Seis Soc Amer 97:S152–S173

    Google Scholar 

  25. Coe JA, Ellis WL, Godt JW, Savage WZ, Savage JE, Michael JA, Kibler JD, Powers PS, Lidke DJ, Debray S (2003) Seasonal movement of the Slumgullion landslide determined from Global Positioning System surveys and field instrumentation, July 1998 – March 2002. Eng Geol 68:67–101

    Google Scholar 

  26. d'Alessio M, Johanson I, Bürgmann R, Schmidt D, Murray M (2005) Slicing up the San Francisco Bay Area: Block kinematics and fault slip rates from GPS‐derived surface velocities. J Geophys Res 110:B06403; doi:10.1029/2004JB003496

  27. Delouis B, Giardini D, Lundgren P, Salichon J (2002) Joint inversion of InSAR, GPS, teleseismic, and strong‐motion data for the spatial and temporal distribution of earthquake slip; application to the 1999 Izmit mainshock. Bull Seis Soc Amer 92:278–299

    Google Scholar 

  28. DeMets C, Gordon R, Argus D (2006) Moving beyond NUVEL-1A: The MORVEL estimates of geologically recent global plate motions. Eos Trans AGU 87(52) Fall Meet Suppl:Abstract G41A-05

    Google Scholar 

  29. DeMets C, Gordon R, Argus D, Stein S (1990) Current plate motions. Geophys J Int 101:425–478

    Google Scholar 

  30. DeMets C, Gordon R, Argus D, Stein S (1994) Effect of recent revisions to the geomagnetic reversal time scale on estimates of current plate motions. Geophys Res Lett 21:2191–2194

    Google Scholar 

  31. Deng J, Gurnis M, Kanamori H, Hauksson E (1998) Viscoelastic flow in the lower crust after the 1992 Landers, California, earthquake. Science 282:1689–1692

    CAS  Google Scholar 

  32. Dieterich J, Decker R (1975) Finite element modeling of surface deformation associated with volcanism. J Geophys Res 80:4094–4102

    Google Scholar 

  33. Dong D, Fang P, Bock Y, Cheng MK, Miyazaki S (2002) Anatomy of apparent seasonal variations from GPS‐derived site position time series. J Geophys Res 107:2075; doi:10.1029/2001JB000573

    Google Scholar 

  34. Douglas A, Beavan J, Wallace L, Townend J (2005) Slow slip on the northern Hikurangi subduction interface, New Zealand. Geophys Res Lett 32:L16305; doi:10.1029/2005GL023607

    Google Scholar 

  35. Dragert H, Wang K, James TS (2001) A silent slip event on the deeper Cascadia subduction interface. Science 292:1525–1528

    CAS  Google Scholar 

  36. Dreger D, Gee L, Lombard P, Murray M, Romanowicz B (2005) Rapid finite‐source analysis and near-fault strong ground motions: Application to the 2003 Mw 6.5 San Simeon and 2004 Mw 6.0 Parkfield earthquakes. Seismol Res Lett 76:40–48

    Google Scholar 

  37. Du Y, Segall P, Gao H (1997) Quasi‐static dislocations in three dimensional inhomogeneous media. Geophys Res Lett 24:2347–2350

    Google Scholar 

  38. Dzurisin D (1992) Geodetic leveling as a tool for studying restless volcanoes. In: Ewert J, Swanson D (eds) Monitoring volcanoes: Techniques and strategies used by the staff of the Cascades Volcano Observatory, 1980-1990, USGS Bull. 1966, US Geological Survey, Reston, VA, pp 125–134

    Google Scholar 

  39. Dzurisin D (2003) A comprehensive approach to monitoring volcano deformation as a window on the eruption cycle. Rev Geophys 41; doi:10.1029/2001RG000107

  40. Dzurisin D (2007) Volcano deformation: Geodetic monitoring techniques. Springer, New York

    Google Scholar 

  41. Eberhart-Phillips D, Michael AJ (1993) Three‐dimensional velocity structure, seismicity, and fault structure in the Parkfield region, central California. J Geophys Res 98:15737–15758

    Google Scholar 

  42. Emore G, Haase J, Choi K, Larson K, Yamagiwa A (2007) Recovering seismic displacements through combined use of 1‑Hz GPS and strong‐motion accelerometers. Bull Seismol Soc Amer 97:357–378; doi:10.1785/0120060153

    Google Scholar 

  43. Fialko Y (2004) Evidence of fluid‐filled upper crust from observations of postseismic deformation due to the 1992 Mw 7.3 Landers earthquake. J Geophys Res 109:B08401; doi:10.1029/2004JB002985

    Google Scholar 

  44. Fletcher H, Beavan J, Freymueller J, Gilbert L (2001) High interseismic coupling of the Alaska subduction zone SW of Kodiak island inferred from GPS data. Geophys Res Lett 28:443–446

    Google Scholar 

  45. Freed A, Bürgmann R (2004) Evidence of power-law flow in the Mojave desert mantle. Nature 430:548–551

    Google Scholar 

  46. Freed A, Bürgmann R, Calais E, Freymueller J, Hreinsdóttir S (2006) Implications of deformation following the 2002 Denali, Alaska, earthquake for postseismic relaxation processes and lithospheric rheology. J Geophys Res 111:B01401; doi:10.1029/2005JB003894

  47. Freymueller J, Murray M, Segall P, Castillo D (1999) Kinematics of the Pacific-North America plate boundary zone, northern California. J Geophys Res 104:7419–7441

    Google Scholar 

  48. Fujinawa Y, Shimada S, Ohmi S, Sekiguchi S, Eguchi T, Okada Y (1991) Fixed point GPS observation of crustal movement associated with the 1989 seismic swarm and submarine volcanic activities of Ito, central Japan. J Phys Earth 39:141–153

    Google Scholar 

  49. Gahalaut VK, Nagarajan B, Catherine JK, Kumar S (2006) Constraints on 2004 Sumatra–Andaman earthquake rupture from GPS measurements in Andaman-Nicobar Islands. Earth Planet Sci Lett 242:365–374

    CAS  Google Scholar 

  50. Gili JA, Corominas J, Rius J (2000) Using Global Positioning System techniques in landslide monitoring. Engineering Geology 55:167–192

    Google Scholar 

  51. Gladwin M, Gwyther R, Hart R, Breckenridge K (1994) Measurements of the strain field associated with episodic creep events on the San Andreas fault near San Juan Bautista, California. J Geophys Res 99:4559–4565

    Google Scholar 

  52. Gwyther RL, Gladwin MT, Mee M, Hart RHG (1996) Anomalous shear strain at Parkfield during 1993–94. Geophys Res Lett 23:2425–2428

    Google Scholar 

  53. Hashimoto M, Hashizume M, Takemoto S, Fukada Y, Fujimori K, Takiguchi H, Satomura M, Otsuka Y, Saito S (2006) Postseismic deformations following the Sumatra–Andaman and Nias earthquakes detected by continuous GPS observation in SE Asia. Seism Res Lett 77:289

    Google Scholar 

  54. Hernandez B, Cotton F, Campillo M (1999) Contribution of radar interferometry to a two-step inversion of the kinematic process of the 1992 Landers earthquake. J Geophys Res 104:13083–13099

    Google Scholar 

  55. Hirose H, Obara K (2006) Short-term slow slip and correlated tremor episodes in the Tokai region, central Japan. Geophys Res Lett 33:L17311; doi:10.1029/2006GL026579

    Google Scholar 

  56. Hofmann-Wellenhof B, Lichtenegger H, Collins J (2001) Global Positioning System theory and practice, 5th edn. Springer, New York

    Google Scholar 

  57. Hreinsdóttir S, Freymueller JT, Bürgmann R, Mitchell J (2006) Coseismic deformation of the 2002 Denali Fault earthquake: Insights from GPS measurements. J Geophys Res 111:B03308; doi:10.1029/2005JB003676

  58. Hreinsdóttir S, Freymueller JT, Fletcher HJ, Larsen CF, Bürgmann R (2003) Coseismic slip distribution of the 2002 Mw 7.9 Denali Fault earthquake, Alaska, determined from GPS measurements. Geophys Res Lett 30:1670; doi:10.1029/2003GL017447

  59. Hsu Y, Simons M, Avouac J-P, Galetzka J, Sieh K, Chlieh M, Natawidjaja D, Prawirodirdjo L, Bock Y (2006) Frictional afterslip following the 2005 Nias-Simeulue earthquake, Sumatra. Science 312:1921–1926

    CAS  Google Scholar 

  60. Hudnut K (1997) The Southern California Integrated GPS Network (SCIGN). Open-File Report, US Geological Survey, Report: OF 97-0467:10-13

    Google Scholar 

  61. Hudnut K, Anderson G, Aspiotes A, King N, Moffitt R, Stark K (2002) GPS fault slip sensors. APEC Symposium on Confronting Urban Earthquakes/Seismic Early Warning. Academia Sinica, Taipei, pp 93–96

    Google Scholar 

  62. Ihmlé PF, Jordan TH (1994) Teleseismic search for slow precursors to large earthquakes. Science 266:1547–1551

    Google Scholar 

  63. Ji C, Larson K, Tan Y, Hudnut K, Choi K (2004) Slip history of the 2003 San Simeon earthquake constrained by combining 1-Hz GPS, strong motion, and teleseismic data. Geophys Res Lett 31:L17608; doi:10.1029/2004GL020448

    Google Scholar 

  64. Johanson I, Bürgmann R (2005) Creep and quakes on the northern transition zone of the San Andreas fault from GPS and InSAR data. J Geophys Res 32:L14306; doi:10.1029/2005GL023150

  65. Johnson K, Segall P (2004) Imaging the ramp-décollement geometry of the Chelungpu fault using coseismic GPS displacements from the 1999 Chi-Chi, Taiwan earthquake. Tectonophysics 378:123–139

    Google Scholar 

  66. Johnson K, Segall P (2004) Viscoelastic cycle models of deep stress driven creep along the San Andreas Fault. J Geophys Res 109; doi:10.1029/2004JB003096

  67. Johnson K, Segall P (2005) A viscoelastic earthquake cycle model for Taiwan. J Geophys Res 110:B10404; doi:10.1029/2004JB003516

    Google Scholar 

  68. Johnston M, Linde A (2002) Implications of crustal strain during convetional, slow, and silent earthquakes. Handbook of Earthquake and Engineering Seismology 81A:589–605

    Google Scholar 

  69. Jónsson S, Segall P, Pedersen R, Björnsson G (2003) Post-earthquake ground movements correlated to pore‐pressure transients. Nature 424:179–183

    Google Scholar 

  70. Jónsson S, Zebker H, Segall P, Amelung F (2002) Fault Slip Distribution of the 1999 Mw 7.1 Hector Mine, California, Earthquake, estimated from Satellite Radar and GPS Measurements. Bull Seis Soc Amer 92:1377–1389

    Google Scholar 

  71. Kaverina A, Dreger D, Price E (2002) The combined inversion of seismic and geodetic data for the source process of the 16 October 1999 Mw 7.1 Hector Mine, California, earthquake. Bull Seis Soc Amer 92:1266–1280

    Google Scholar 

  72. King N, Murray M, Prescott W, Clymer R, Romanowicz B (1994) The Bay Area Regional Deformation (BARD) permanent GPS array. Eos Trans AGU 75(44) Fall Meet Suppl:470

    Google Scholar 

  73. Kreemer C, Blewitt G, Hammond W, Plag HP (2006) Global deformation from the great 2004 Sumatra–Andaman earthquake observed by GPS: Implications for rupture process and global reference frame. Earth Planets Space 58:141–148

    Google Scholar 

  74. Langbein J (2004) Noise in two-color electronic distance meter measurements revisited. J Geophys Res 109:B04406; doi:10.1029/2003JB002819

    Google Scholar 

  75. Langbein J, Gwyther RL, Hart RHG, Gladwin MT (1999) Slip-rate increase at Parkfield in 1993 detected by high‐precision EDM and borehole tensor strainmeters. Geophys Res Lett 26:2529–2532

    Google Scholar 

  76. Langbein J, Murray J, Snyder HA (2006) Coseismic and initial postseismic deformation from the 2004 Parkfield, California, earthquake, observed by Global Positioning System, electronic distance meter, creepmeters, and borehole strainmeters. Bull Seismol Soc Amer 96:S304–S320; doi:10.1785/0120050823

    Google Scholar 

  77. Larson K (1995) Crustal deformation. Rev Geophys 33:371–378; doi:10.1029/95RG00439

    Google Scholar 

  78. Larson K, Bodin P, Gomberg J (2003) Using 1-Hz GPS data to measure deformations caused by the Denali fault earthquake. Science 300:1421–1424; doi:10.1126/science.1084531

    CAS  Google Scholar 

  79. Larson K, Freymueller J, Philipsen S (1997) Global plate velocities from the Global Positioning System. J Geophys Res 102:9961–9981

    Google Scholar 

  80. Larson K, van Dam T (2000) Measuring postglacial rebound with GPS and absolute gravity. Geophys Res Lett 27:3925–3928

    Google Scholar 

  81. Lay T, Kanamori H, Ammon C, Nettles M, Ward S, Aster R, Beck S, Bilek S, Brudzinski M, Butler R, DeShon H, Ekstrom G, Satake K, Sipkin S (2005) The great Sumatra–Andaman earthquake of 26 December 2004. Science 308:1127–1133

    CAS  Google Scholar 

  82. Linde A, Gladwin M, Johnston M, Gwyther R, Bilham R (1996) A slow earthquake sequence on the San Andreas fault. Nature 383:65–68

    CAS  Google Scholar 

  83. Lowry A (2006) Resonant slow fault slip in subduction zones forced by climatic load stress. Nature, 442:802–805

    CAS  Google Scholar 

  84. Maerten F, Resor P, Pollard D, Maerten L (2005) Inverting for slip on three‐dimensional fault surfaces using angular dislocations. Bull Seismol Soc Amer 95:1654–1665

    Google Scholar 

  85. Manaker D, Bürgmann R, Prescott W, Langbein J (2003) Distribution of interseismic slip rates and the potential for significant earthquakes on the Calaveras fault, central California. J Geophys Res 108:B62287; doi:10.1029/2002JB001749

  86. Mao A, Harrison C, Dixon T (1999) Noise in GPS coordinate time series. J Geophys Res 104:2797–2816

    Google Scholar 

  87. Mattia M, Rossi M, Guglielmino F, Aloisi M, Bock Y (2004) The shallow plumbing system of Stromboli Island as imaged from 1 Hz instantaneous GPS positions. Geophys Res Lett 31:L24610; doi:10.1029/2004GL021281

    Google Scholar 

  88. Mazzotti S, James TS, Henton J, Adams J (2005) GPS crustal strain, postglacial rebound, and seismic hazard in eastern North America: The Saint Lawrence valley example. J Geophys Res 110:B11301; doi:10.1029/2004JB003590

    Google Scholar 

  89. McCaffrey R (2005) Block kinematics of the Pacific-North America plate boundary in southwestern United States from inversion of GPS, seismological, and geologic data. J Geophys Res 110:B07401; doi:10.1029/2004JB003307

    Google Scholar 

  90. Meade B, Hager B (2005) Block models of crustal motion in southern California constrained by GPS measurements. J Geophys Res 110:B03403; doi:10.1029/2004JB003209

    Google Scholar 

  91. Meltzner A, Sieh K, Abrams M, Agnew D, Hudnut K, Avouac JP, Natawidjaja DH (2006) Uplift and subsidence associated with the great Aceh-Andaman earthquake of 2004. J Geophys Res 111:B02407; doi:10.1029/2005JB003891

    Google Scholar 

  92. Miller M, Johnson D, Rubin C, Dragert H, Endo E, Humphreys E, Nabelek J, Qamar A (1997) GPS Monitoring of the Cascadia Margin: The Pacific Northwest Geodetic Array (PANGA). Eos Trans AGU 78(46) Fall Meet Suppl:167

    Google Scholar 

  93. Miller M, Johnson D, Rubin C, Dragert H, Wang K, Qamar A, Goldfinger C (2001) GPS-determination of along‐strike variation in Cascadia margin kinematics: Implications for relative plate motion, subduction zone coupling, and permanent deformation. Tectonics 20:161–176

    Google Scholar 

  94. Miller M, Melbourne T, Johnson D, Sumner W (2002) Periodic slow earthquakes from the Cascadia subduction zone. Science 295:2423

    CAS  Google Scholar 

  95. Milne GA, Davis JL, Mitrovica JX, Scherneck HG, Johansson JM, Vermeer M, Koivula H (2001) Space-geodetic constraints on glacial isostatic adjustment in Fennoscandia. Science 291:2381–2385

    CAS  Google Scholar 

  96. Miyazaki S, Larson K, Choi K, Hikima K, Koketsu K, Bodin P, Haase J, Emore G, Yamagiwa A (2004) Modeling the rupture process of the 2003 September 25 Tokachi-Oki (Hokkaido) earthquake using 1-Hz GPS data. Geophys Res Lett 31:L21603; doi:10.1029/2004GL021457

    Google Scholar 

  97. Miyazaki S, Segall P, Fukuda J, Kato T (2004) Space time distribution of afterslip following the 2003 Tokachi-oki earthquake: Implications for variations in fault zone frictional properties. Geophys Res Lett 31:L06623; doi:10.1029/2003GL019410

    Google Scholar 

  98. Miyazaki S, Segall P, McGuire J, Kato T, Hatanaka Y (2006) Spatial and temporal evolution of stress and slip rate during the 2000 Tokai slow earthquake. J Geophys Res 111:B03409; doi:10.1029/2004JB003426

    Google Scholar 

  99. Mogi K (1958) Relations between the eruptions of various volcanoes and the deformations of the ground surfaces around them. Bull Seismol Soc Amer 36:111–123

    Google Scholar 

  100. Mora P, Baldi P, Casula G, Fabris M, Ghirotti M, Mazzini E, Pesci A (2003) Global Positioning Systems and digital photogrammetry for the monitoring of mass movements: Application to the Ca' di Malta landslide (northern Appenines, Italy). Eng Geol 68:103–121

    Google Scholar 

  101. Murray J, Langbein J (2006) Slip on the San Andreas fault at Parkfield, California, over two earthquake cycles, and the implications for seismic hazard. Bull Seismol Soc Amer 96:S283–S303

    Google Scholar 

  102. Murray J, Segall P (2005) Spatiotemporal evolution of a slip-rate increase on the San Andreas fault near Parkfield, CA. J Geophys Res 110:B09407; doi:10.1029/2005JB003651

    Google Scholar 

  103. Murray J, Segall P, Cervelli P, Prescott W, Svarc J (2001) Inversion of GPS data for spatially variable slip-rate on the San Andreas Fault near Parkfield, CA. Geophys Res Lett 28:359–362

    Google Scholar 

  104. Nikolaidis R, Bock Y, de Jonge P, Shearer P, Agnew D, Domselaar M (2001) Seismic wave observations with the Global Positioning System. J Geophys Res 106:21897–21916

    Google Scholar 

  105. Obara K (2002) Nonvolcanic deep tremor associated with subduction in southwest Japan. Science 296:1679–1681

    CAS  Google Scholar 

  106. Obara K, Hirose H, Yamamizu F, Kasahara K (2004) Episodic slow slip events accompanied by non‐volcanic tremors in southwest Japan subduction zone. Geophys Res Lett 31; doi:10.1029/2004GL020848

  107. Ohta Y, Freymueller J, Hreinsdóttir S, Suito H (2006) A large slow slip event and the depth of the seismogenic zone in the south central Alaska subduction zone. Earth Plan Sci Lett 247:108–116

    Google Scholar 

  108. Ohta Y, Kimata F, Sagiya T (2004) Reexamination of the interplate coupling in the Tokai region, central Japan, based on the GPS data in 1997-2002. Geophys Res Lett 31:L24604; doi:10.1029/2004GL021404

    Google Scholar 

  109. Okada Y (1985) Surface deformation due to shear and tensile faults in a half-space. Bull Seismol Soc Amer 75:1135–1154

    Google Scholar 

  110. Okada Y (1992) Internal deformation due to shear and tensile faults in a half-space. Bull Seismol Soc Amer 82:1018–1040

    Google Scholar 

  111. Owen S, Segall P, Lisowski M, Miklius A, Denlinger R, Sako M (2000) Rapid deformation of Kilauea volcano: GPS measurements between 1990 and 1996. J Geophys Res 105:18983–18998

    CAS  Google Scholar 

  112. Owen S, Segall P, Lisowski M, Murray M, Bevis M, Foster J (2000) The January 30, 1997 eruptive event on Kilauea Volcano, Hawaii, as monitored by continuous GPS. Geophys Res Lett 27:2757–2760

    Google Scholar 

  113. Ozawa S, Murakami M, Fujiwara S, Tobita M (1997) Synthetic aperture radar interferogram of the 1995 Kobe earthquake and its geodetic inversion. Geophys Res Lett 24:2327–2330

    Google Scholar 

  114. Ozawa S, Suito H, Imakiire T, Murakmi M (2007) Spatiotemporal evolution of aseismic interplate slip between 1996 and 1998 and between 2002 and 2004, in Bungo channel, southwest Japan. J Geophys Res 112:B05409; doi:10.1029/2006JB004643

    Google Scholar 

  115. Park J, Anderson K, Aster R, Butler R, Lay T, Simpson D (2005) Global seismographic network records the great Sumatra–Andaman earthquake. Eos Trans AGU 86:57, 60–61

    Google Scholar 

  116. Park J, Song TR, Tromp J, Okal E, Stein S, Roult G, Clevede E, Laske G, Kanamori H, Davis P, Berger J, Braitenberg C, Van Camp M, Lei X, Sun H, Xu H, Rosat S (2005) Earth's free oscillations excited by the 26 December 2004 Sumatra–Andaman earthquake. Science 308:1139–1144

    CAS  Google Scholar 

  117. Park K, Nerem RS, Davis JL, Schenewerk MS, Milne GA, Mitrovica JX (2002) Investigation of glacial isostatic adjustment in the northeast US using GPS measurements. Geophys Res Lett 29:1509; doi:10.1029/2001GL013782

    Google Scholar 

  118. Peltzer G, Rosen P, Rogez F, Hudnut K (1998) Poroelastic rebound along the Landers 1992 earthquake surface rupture. J Geophys Res 103:30131–30145

    Google Scholar 

  119. Poland M, Hamburger M, Newman A (2006) The changing shapes of active volcanoes: History, evolution, and future challenges for volcano geodesy. J Volc Geotherm Res 150:1–13

    CAS  Google Scholar 

  120. Polet J, Kanamori H (2000) Shallow subduction zone earthquakes and their tsunamigenic potential. Geophys J Int 142:684–702

    Google Scholar 

  121. Pollitz F (2005) Transient rheology of the upper mantle beneath central Alaska inferred from the crustal velocity field following the 2002 Denali earthquake. J Geophys Res 110:B08407; doi:10.1029/2005JB003672

    Google Scholar 

  122. Pollitz F, Wicks C, Thatcher W (2001) Mantle flow beneath a continental strike-slip fault: postseismic deformation after the 1999 Hector Mine earthquake. Science 293:1814–1818

    CAS  Google Scholar 

  123. Pratt T (2006) Do Episodic Tremor and Slip (ETS) Events Affect Seismicity in the Northern Cascadia Subduction Zone? Eos Trans AGU 87(52), Fall Meet Suppl, Abstract T54A-04

    Google Scholar 

  124. Prawirodirdjo L, Bock Y (2004) Instantaneous global plate motion model from 12 years of continuous GPS observations. J Geophys Res 109:B08405; doi:10.1029/2003JB002944

    Google Scholar 

  125. Prescott W, Savage J, Svarc J, Manaker D (2001) Deformation across the Pacific-North America plate boundary near San Francisco, California. J Geophys Res 106:6673–6682

    Google Scholar 

  126. Pritchard M, Norabuena E, Ji C, Boroschek R, Comte D, Simons M, Dixon T, Rosen P (2007) Geodetic, teleseismic, and strong motion constraints on slip from recent southern Peru subduction zone earthquakes. J Geophys Res 112:B03307; doi:10.1029/2006JB004294

    Google Scholar 

  127. Reid HF (1910) The California Earthquake of April 18, 1906. In: Report of the state earthquake investigation commission, vol 2, Carnegie Institute, Washington DC

    Google Scholar 

  128. Reid M, LaHusen R, Schmidt K (2004) Capturing 3-D displacements in active landslides using GPS. Abstracts with Programs. Geol Soc Amer 36:331

    Google Scholar 

  129. Rhie J, Dreger D, Bürgmann R, Romanowicz B (2007) Slip of the 2004 Sumatra–Andaman earthquake from joint inversion of long‐period global seismic waveforms and GPS static offsets. Bull Seismol Soc Amer 97:S115–S127

    Google Scholar 

  130. Rogers G, Dragert H (2003) Episodic tremor and slip on the Cascadia subduction zone: the chatter of silent slip. Science 300:1942–1943

    CAS  Google Scholar 

  131. Sagiya T (2004) Interplate coupling in the Kanto district, central Japan, and the Boso Peninsula silent earthquake in May 1996. Pure Appl Geophys 161:2327–2342; doi:10.1007/s00024-004-2566-6

    Google Scholar 

  132. Salichon J, Lundgren P, Delouis B, Giardini D (2004) Slip history of the 16 October 1999 Mw 7.1 Hector Mine earthquake (California) from the inversion of InSAR, GPS, and teleseismic data. Bull Seismol Soc Amer 94:2015–2027

    Google Scholar 

  133. Savage J, Prescott W (1978) Asthenosphere readjustment and the earthquake cycle. J Geophys Res 83:3369–3376

    Google Scholar 

  134. Savage J, Svarc J, Yu SB (2005) Postseismic relaxation and transient creep. J Geophys Res 110:B11402; doi:10.1029/2005JB003687

    Google Scholar 

  135. Schmalzle G, Dixon T, Malservisi R, Govers R (2006) Strain accumulation across the Carrizo segment of the San Andreas fault, California: Impact of laterally varying crustal properties. J Geophys Res 111:B05403; doi:10.1029/2005JB003843

    Google Scholar 

  136. Schmidt D, Bürgmann R, Nadeau R, d'Alessio M (2005) Distribution of aseismic slip rate on the Hayward fault inferred from seismic and geodetic data. J Geophys Res 110:B08406; doi:10.1029/2004JB003397

  137. Segall P (2002) Integrating geologic and geodetic estimates of slip rate on the San Andreas Fault system. Int Geol Rev 44:62–82

    Google Scholar 

  138. Segall P, Harris R (1986) Slip deficit on the San Andreas fault at Parkfield, California, as revealed by inversion of geodetic data. Science 233:1409–1413

    CAS  Google Scholar 

  139. Segall P, Desmarais E, Shelly D, Miklius A, Cervelli P (2006) Earthquakes triggered by silent slip events on Kilauea volcano, Hawaii. Nature 442:71–74; doi:10.1038/nature04938

    CAS  Google Scholar 

  140. Sella G, Dixon T, Mao A (2002) REVEL: A model for recent plate velocities from space geodesy. J Geophys Res 107:B42081; doi:10.1029/2000JB000033

    Google Scholar 

  141. Sella G, Stein S, Dixon T, Craymer M, James T, Mazzotti S, Dokka R (2007) Observation of glacial isostatic adjustment in “stable” North America with GPS. Geophys Res Lett 34:L02306; doi:10.1029/2006GL027081

  142. Shelly D, Beroza G, Ide S (2007) Non-volcanic tremor and low-frequency earthquake swarms. Nature 446:305–307

    CAS  Google Scholar 

  143. Shelly D, Beroza G, Ide S, Nakamula S (2006) Low-frequency earthquakes in Shikoku, Japan, and their relationship to episodic tremor and slip. Nature 442:188–191

    CAS  Google Scholar 

  144. Shimada S, Bock Y (1992) Crustal deformation measurements in central Japan determined by a Global Positioning System fixed point network. J Geophys Res 97:12437–12455

    Google Scholar 

  145. Shimada S, Fujinawa Y, Sekiguchi S, Ohmi S, Eguchi T, Okada Y (1990) Detection of a volcanic fracture in Japan using Global Positioning System measurements. Nature 343:631–633

    Google Scholar 

  146. Sieh K, Jahns RH (1984) Holocene activity of the San Andreas fault at Wallace Creek, California. Geol Soc Amer Bull 95:883–896

    Google Scholar 

  147. Silver P, Bock Y, Agnew D, Henyey T, Linde A, McEvilly T, Minster JB, Romanowicz B, Sachs I, Smith R, Solomon S, Stein S (1999) A Plate Boundary Observatory. IRIS Newsletter XVI:3–9

    Google Scholar 

  148. Simons M, Fialko Y, Rivera L (2002) Coseismic deformation from the 1999 Mw 7.1 Hector Mine, California, earthquake as inferred from InSAR and GPS observations. Bull Seismol Soc Amer 92:1390–1402

    Google Scholar 

  149. Sims JD (1990) Geologic map of the San Andreas fault in the Parkfield 7.5-minute quadrangle, Monterey and Fresno counties, California. US Geol Surv Misc Field Studies Map MF-2115

    Google Scholar 

  150. Snay R, Cline M, Dillinger W, Foote R, Hilla S, Kass W, Ray J, Rohde J, Sella G, Soler T (2007) Using global positioning system‐derived crustal velocities to estimate rates of absolute sea level change from North American tide gauge records. J Geophys Res 112:B04409; doi:10.1029/2006JB004606

    Google Scholar 

  151. Squarzoni C, Delacourt C, Allemand P (2005) Differential single‐frequency GPS monitoring of the La Valette landslide (French Alps). Eng Geol 79:215–229

    Google Scholar 

  152. Stein S, Okal E (2005) Speed and size of the Sumatra earthquake. Nature 434:581–582

    CAS  Google Scholar 

  153. Subarya C, Chlieh M, Prawirodirdjo L, Avouac JP, Bock Y, Sieh K, Meltzner AJ, Natawidjaja DH, McCaffrey R (2006) Plateboundary deformation associated with the great Sumatra–Andaman earthquake. Nature 440:46–51

    CAS  Google Scholar 

  154. Suwa Y, Miura S, Hasegawa A, Sato T, Tachibana K (2006) Interplate coupling beneath NE Japan inferred from three‐dimensional displacement field. J Geophys Res 111:B04402; doi:10.1029/2004JB003203

    Google Scholar 

  155. Szeliga W, Melbourne T, Miller M, Santillan V (2004) Southern Cascadia episodic slow earthquakes. Geophys Res Lett 31:L16602; doi:10.1029/2004GL020824

    Google Scholar 

  156. Thatcher W (1983) Nonlinear strain buildup and the earthquake cycle on the San Andreas fault. J Geophys Res 88:5893–5902

    Google Scholar 

  157. Thatcher W (1995) Microplate versus continuum descriptions of active tectonic deformation. J Geophys Res 100:3885–3894

    Google Scholar 

  158. Thatcher W (2007) Microplate model for the present-day deformation of Tibet. J Geophys Res 112:B01401; doi:10.1029/2005JB004244

    Google Scholar 

  159. Thurber C, Zhang H, Waldhauser F, Hardebeck J, Michael A, Eberhart-Phillips D (2006) Three-dimensional compressional wavespeed model, earthquake relocations, and focal mechanisms for the Parkfield, California, region. Bull Seism Soc Amer 96:S38–S49

    Google Scholar 

  160. Vigny C, Simons WJF, Abu S, Bamphenyu R, Satirapod C, Choosakul N, Subarya C, Socquet A, Omar K, Abidin HZ, Ambrosius BAC (2005) Insight into the 2004 Sumatra–Andaman earthquake from GPS measurements in southeast Asia. Nature 436:201–206

    CAS  Google Scholar 

  161. Wahba G (1990) Spline Models for Observational Data. SIAM, Philadelphia PA

    Google Scholar 

  162. Wald D, Heaton T (1994) Spatial and temporal distribution of slip for the 1992 Landers, California, earthquake. Bull Seismol Soc Amer 84:668–691

    Google Scholar 

  163. Waldhauser F, Ellsworth W (2000) A double-difference earthquake location algorithm: Method and application to the northern Hayward fault, California. Bull Seismol Soc Amer 90:1353–1368

    Google Scholar 

  164. Wallace L, Beavan J, McCaffrey R, Darby D (2004) Subduction zone coupling and tectonic block rotations in the North Island, New Zealand. J Geophys Res 109:B12406; doi:10.1029/2004JB003241

    Google Scholar 

  165. Wang GQ, Boore D, Tang G, Zhou X (2007) Comparisons of ground motions from collocated and closely spaced one-sample-per-second Global Positioning System and accelerograph recordings of the 2003 M 6.5 San Simeon, California, earthquake in the Parkfield region. Bull Seismol Soc Amer 97:76–90

    Google Scholar 

  166. Williams S, Bock Y, Fang P, Jamason P, Nikolaidis R, Prawirodirdjo L, Miller M, Johnson D (2004) Error analysis of continuous GPS position time series. J Geophys Res 109. doi:10.1029/2003JB002741

  167. Working Group on California Earthquake Probabilities (2003) Earthquake probabilities in the San Francisco Bay Region: 2002-2031. US Geol Surv Open File Report 03-214

    Google Scholar 

  168. Wright T, Lu Z, Wicks C (2004) Constraining the slip distribution and fault geometry of the Mw 7.9, 3 November 2002, Denali Fault earthquake with interferometric synthetic aperture radar and Global Positioning System data. Bull Seismol Soc Amer 94:175–189

    Google Scholar 

  169. Yagi Y, Kikuchi M, Nishimura T (2003) Co-seismic slip, post-seismic slip, and largest aftershock associated with the 1994 Sanriku-haruka-oki, Japan, earthquake. Geophys Res Lett 30:2177; doi:10.1029/2003GL018189

    Google Scholar 

  170. Zhang J, Bock Y, Johnson H, Fang P, Williams S, Genrich J, Wdowinski S, Behr J (1997) Southern California permanent GPS geodetic array: Error analysis of daily position estimates and site velocities. J Geophys Res 102:18035–18055

    Google Scholar 

  171. Zhang PZ, Shen Z, Wang M, Gan W, Bürgmann R, Molnar P, Wang Q, Niu Z, Sun J, Wu J, Hanrong S, Xinzhao Y (2004) Continuous deformation of the Tibetan Plateau from global positioning system data. Geol 32:809–812

    Google Scholar 

Books and Reviews

  1. Bolt B (1999) Earthquakes, 4th edn. W H Freeman and Company, New York

    Google Scholar 

  2. Menke W (1989) Geophysical data analysis: Discrete inverse theory, rev edn. In: Dmowska R, Holton J (eds) International geophysics series 45. Academic Press, San Diego

    Google Scholar 

  3. Misra P, Enge P (2001) Global Positioning System: Signals, measurements, and performance. Ganga-Jamuna Press, Lincoln, MA

    Google Scholar 

  4. Schwartz S, Rokosky J (2007) Slow slip events and seismic tremor at circum-pacific subduction zones. Rev Geophys 45:RG3004

    Google Scholar 

  5. Shearer P (1999) Introduction to seismology. Cambridge University Press, New York

    Google Scholar 

  6. Strang G, Borre K (1997) Linear algebra, geodesy, and GPS. Wellesley-Cambridge Press, Wellesley, MA

    Google Scholar 

Download references

Acknowledgments

John Langbein, Margaret Boettcher, Maurizio Battaglia, Emily Desmarais, Tom Hanks, and Fred Pollitz provided helpful comments which significantly improved this manuscript.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag

About this entry

Cite this entry

Murray-Moraleda, J. (2011). GPS: Applications in Crustal Deformation Monitoring. In: Meyers, R. (eds) Extreme Environmental Events. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-7695-6_33

Download citation

Publish with us

Policies and ethics