Skip to main content

Evacuation Dynamics: Empirical Results, Modeling and Applications

  • Reference work entry
Extreme Environmental Events

Article Outline

Glossary

Definition of the Subject

Introduction

Empirical Results

Modeling

Applications

Future Directions

Acknowledgments

Bibliography

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 599.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    In strictly one‐dimensional motion often a line density (dimension: 1/length) is used. Then the flow is given by \({J=\rho v}\).

  2. 2.

    One exception is the German MVStättV [130], see above.

Abbreviations

Pedestrian:

A person traveling on foot. In this article, other characterizations are used depending on the context, e. g., agent or particle.

Crowd:

A large group of pedestrians moving in the same area, but not necessarily in the same direction.

Evacuation:

The movement of persons from a dangerous place due to the threat or occurrence of a disastrous event. In normal situations this is called “egress” instead.

Flow:

The flow or current J is defined as the number of persons passing a specified cross-section per unit time. The common unit of flow is “persons per second”. Specific flow is the flow per unit cross-section. The maximal flow supported by a facility (or a part of it) is called “capacity”.

Fundamental diagram:

In traffic engineering (and physics): density‐dependence of the flow: \({J(\rho)}\). Due to the hydrodynamic relation \({J=\rho vb}\) equivalent representations used frequently are \({v=v(\rho)}\) or \({v=v(J)}\). The fundamental diagram is probably the most important quantitative characterization of traffic systems.

Lane formation:

In bidirectional flows, lanes are often dynamically formed in which all pedestrians move in the same direction.

Bottleneck:

A limited resource for pedestrian flows, for example a door, a narrowing in a corridor, or stairs, i. e., a location of reduced capacity. At bottlenecks jamming occurs if the inflow is larger than the capacity. Other phenomena that can be observed are the formation of lanes and the zipper‐effect.

Microscopic models:

Models which represent each pedestrian separately with individual properties like walking velocity or route choice behavior and the interactions between them. Typical models that belong to this class are cellular automata and the social‐force model.

Macroscopic models:

Models which do not distinguish individuals. The description is based on aggregate quantities, e. g., appropriate densities. Typical models belonging to this class are fluid‐dynamic approaches. Hand calculation methods which are based on related ideas and are often used in the field of (fire‐safety) engineering belong to this class as well.

Crowd disaster:

An accident in which the specific behavior of the crowd is a relevant factor, e. g., through competitive and non‐adaptive behavior. In the media, it is often called “panic” which is a controversial concept in crowd dynamics and should thus be avoided.

Bibliography

Primary Literature

  1. Abe K (1986) The Science of Human Panic. Brain, Tokyo (in Japanese)

    Google Scholar 

  2. AlGadhi SAH, Mahmassani HS, Herman R (2002) A speed-concentration relation for bi-directional crowd movements with strong interaction. In: Schreckenberg M, Sharma SD (eds) Pedestrian and Evacuation Dynamics. Springer, Berlin, pp 3–20

    Google Scholar 

  3. American Sociological Association (2002) In disasters, panic is rare, altruism dominates. Technical report, American Sociological Association

    Google Scholar 

  4. Ashe B, Shields TJ (1999) Analysis and modelling of the unannounced evacuation of a large retail store. Fire Mater 23:333–336

    CAS  Google Scholar 

  5. Ben-Jacob E (1997) From snowflake formation to growth of bacterial colonies, Part II. Cooperative formation of complex colonial patterns. Contemp Phys 38:205

    CAS  Google Scholar 

  6. Biham O, Middleton AA, Levine D (1992) Self-organization and a dynamical transition in traffic-flow models. Phys Rev A 46:R6124

    Google Scholar 

  7. Blue VJ, Adler JL (2000) Cellular automata microsimulation of bi-directional pedestrian flows. J Trans Res Board 1678:135–141

    Google Scholar 

  8. Blue VJ, Adler JL (2002) Flow capacities from cellular automata modeling of proportional spilts of pedestrians by direction. In: Schreckenberg M, Sharma SD (eds) Pedestrian and Evacuation Dynamics. Springer, Berlin, pp 115–121

    Google Scholar 

  9. Blythe RA et al (2007) Nonequilibrium steady states of matrix product form: a solver's guide. Math Theor 40:R333–R441, doi:10.1088/1751-8113/40/46/R01

    Google Scholar 

  10. Bolay K (1998) Nichtlineare Phänomene in einem fluid-dynamischen Verkehrsmodell. Diploma Thesis, Stuttgart University

    Google Scholar 

  11. Boyce KE, Shields TJ, Silcock GWH (1999) Toward the Characterization of Building Occupancies for Fire Safety Engineering: Capabilities of Disabled People Moving Horizontally and on an Incline. Fire Technol 35:51–67

    Google Scholar 

  12. Bryan JL (1995) Behavioral response to fire and smoke. In: DiNenno PJ, Beyler CL, Custer RLP, Walton WD, Watts JM, Drysdale D, Hall JR (eds) SFPE Handbook of Fire Protection Engineering, 2nd edn. National Fire Protection Association, Quincy, p 263

    Google Scholar 

  13. Burstedde C, Klauck K, Schadschneider A, Zittartz J (2001) Simulation of pedestrian dynamics using a two-dimensional cellular automaton. Physica A 295:507–525

    Google Scholar 

  14. Burstedde C, Kirchner A, Klauck K, Schadschneider A, Zittartz J (2002) Cellular automaton approach to pedestrian dynamics – applications. In: Schreckenberg M, Sharma SD (eds) Pedestrian and Evacuation Dynamics. Springer, Berlin, pp 87–98

    Google Scholar 

  15. Chakrabarti J, Dzubiella J, Löwen H (2004) Reentrance effect in the lane formation of driven colloids. Phys Rev E 70:012401

    Google Scholar 

  16. Chowdhury D, Santen L, Schadschneider A (2000) Statistical physics of vehicular traffic and some related systems. Phys Rep 329(4–6):199–329

    Google Scholar 

  17. Clarke L (2002) Panic: Myth or reality? Contexts 1(3):21–26

    Google Scholar 

  18. Coleman JS (1990) Foundation of Social Theory. Belknap, Cambridge, Chap 9

    Google Scholar 

  19. Daamen W (2004) Modelling Passenger Flows in Public Transport Facilities. Ph.D. thesis, Technical University of Delft

    Google Scholar 

  20. Daamen W, Hoogendoorn SP (2006) Flow-density relations for pedestrian traffic. In: Schadschneider A, Pöschel T, Kühne R, Schreckenberg M, Wolf DE (eds) Traffic and Granular Flow 05. Springer, Berlin, pp 315–322

    Google Scholar 

  21. Daamen W, Bovy PHL, Hoogendoorn SP (2002) Modelling pedestrians in transfer stations. In: Schreckenberg M, Sharma SD (eds) Pedestrian and Evacuation Dynamics. Springer, Berlin, pp 59–73

    Google Scholar 

  22. de Gelder B, Snyder J, Greve D, Gerard G, Hadjikhani N (2004) Fear fosters flight: A mechanism for fear contagion when perceiving emotion expressed by a whole body. Proc Natl Acad Sci 101(47):16701–16706

    Google Scholar 

  23. Derrida B (1998) An exactly soluble non-equilibrium system: The asymmetric simple exclusion process. Phys Rep 301:65

    CAS  Google Scholar 

  24. Dieckmann D (1911) Die Feuersicherheit in Theatern. Jung, München (in German)

    Google Scholar 

  25. DiNenno PJ (ed) (2002) SFPE Handbook of Fire Protection Engineering, 3rd edn. National Fire Protection Association, Bethesda

    Google Scholar 

  26. DiNenno PJ, Beyler CL, Custer RLP, Walton WD, Watts JM, Drysdale D, Hall JR (eds) (1995) SFPE Handbook of Fire Protection Engineering, 2nd edn. National Fire Protection Association, Quincy

    Google Scholar 

  27. Dogliani M (2002) An overview of present and under-development IMO's requirements concerning evacuation from ships. In: Schreckenberg M, Sharma SD (eds) Pedestrian and Evacuation Dynamics. Springer, Berlin, pp 339–354

    Google Scholar 

  28. Dzubiella J, Hoffmann GP, Löwen H (2002) Lane formation in colloidal mixtures driven by an external field. Phys Rev E 65:021402

    Google Scholar 

  29. Ehm M, Linxweiler J (2004) Berechnungen von Evakuierungszeiten bei Sonderbauten mit dem Programm buildingExodus. Technical report, TU Braunschweig

    Google Scholar 

  30. El Yacoubi S, Chopard B, Bandini S (eds) (2006) Cellular Automata – 7th International Conference on Cellular Automata for Research and Industry, ACRI 2006, Perpignan. Springer, Berlin

    Google Scholar 

  31. Federal Aviation Administration FAA (1990) Emergency evacuation – cfr sec. 25.803. Regulation CFR Sec. 25.803

    Google Scholar 

  32. Fischer H (1933) Über die Leistungsfähigkeit von Türen, Gängen und Treppen bei ruhigem, dichtem Verkehr. Dissertation, Technische Hochschule Dresden (in German)

    Google Scholar 

  33. Frantzich H (1996) Study of movement on stairs during evacuation using video analysing techniques. Technical report, Department of Fire Safety Engineering, Lund Institute of Technology

    Google Scholar 

  34. Frisch U, Hasslacher B, Pomeau Y (1986) Lattice-gas automata for the Navier-Stokes equation. Phys Rev Lett 56:1505

    CAS  Google Scholar 

  35. Fruin JJ (1971) Pedestrian Planning and Design. Metropolitan Association of Urban Designers and Environmental Planners, New York

    Google Scholar 

  36. Fruin JJ (1993) The causes and prevention of crowd disasters. In: Smith RA, Dickie JF (eds) Engineering for Crowd Safety. Amsterdam, Elsevier

    Google Scholar 

  37. Fujiyama T (2006) Collision avoidance of pedestrians on stairs. Technical report, Centre for Transport Studies. University College London, London

    Google Scholar 

  38. Fujiyama T, Tyler N (2004) An explicit study on walking speeds of pedestrians on stairs. In: 10th International Conference on Mobility and Transport for Elderly and Disabled People, Hamamatsu, Japan, May 2004

    Google Scholar 

  39. Fujiyama T, Tyler N (2004) Pedestrian Speeds on Stairs: An Initial Step for a Simulation Model. In: Proceedings of 36th Universities Transport Studies Group Conference, Life Science Centre, Newcastle upon Tyne, Jan 2004

    Google Scholar 

  40. Fukui M, Ishibashi Y (1999) Jamming transition in cellular automaton models for pedestrians on passageway. J Phys Soc Jpn 68:3738

    CAS  Google Scholar 

  41. Fukui M, Ishibashi Y (1999) Self-organized phase transitions in cellular automaton models for pedestrians. J Phys Soc Jpn 68:2861

    CAS  Google Scholar 

  42. Galbreath M (1969) Time of evacuation by stairs in high buildings. Fire Res Note 8, NRCC

    Google Scholar 

  43. Galea ER (2002) Simulating evacuation and circulation in planes, trains, buildings and ships using the EXODUS software. In: Schreckenberg M, Sharma SD (eds) Pedestrian and Evacuation Dynamics. Springer, Berlin pp 203–226

    Google Scholar 

  44. Galea ER (ed) (2003) Pedestrian and Evacuation Dynamics 2003. CMS Press, London

    Google Scholar 

  45. Gipps PG, Marksjö B (1985) A micro-simulation model for pedestrian flows. Math Comput Simul 27:95–105

    Google Scholar 

  46. Graat E, Midden C, Bockholts P (1999) Complex evacuation; effects of motivation level and slope of stairs on emergency egress time in a sports stadium. Saf Sci 31:127–141

    Google Scholar 

  47. Grosshandler W, Sunder S, Snell J (2003) Building and fire safety investigation of the world trade center disaster. In: Galea ER (ed) Pedestrian and Evacuation Dynamics 2003. CMS Press, London, pp 279–281

    Google Scholar 

  48. Hamacher HW, Tjandra SA (2002) Mathematical modelling of evacuation problems – a state of the art. In: Schreckenberg M, Sharma SD (eds) Pedestrian and Evacuation Dynamics. Springer, Berlin, pp 227–266

    Google Scholar 

  49. Hankin BD, Wright RA (1958) Passenger flow in subways. Oper Res Q 9:81–88

    Google Scholar 

  50. Helbing D (1992) A fluid-dynamic model for the movement of pedestrians. Complex Syst 6:391–415

    Google Scholar 

  51. Helbing D (2001) Traffic and related self-driven many-particle systems. Rev Mod Phys 73:1067–1141

    Google Scholar 

  52. Helbing D, Molnár P (1995) Social force model for pedestrian dynamics. Phys Rev E 51:4282–4286

    Google Scholar 

  53. Helbing D, Farkas I, Vicsek T (2000) Freezing by heating in a driven mesoscopic system. Phys Rev Let 84:1240–1243

    CAS  Google Scholar 

  54. Helbing D, Farkas I, Vicsek T (2000) Simulating dynamical features of escape panic. Nature 407:487–490

    CAS  Google Scholar 

  55. Helbing D, Farkas I, Molnár P, Vicsek T (2002) Simulation of pedestrian crowds in normal and evacuation situations. In: Schreckenberg M, Sharma SD (eds) Pedestrian and Evacuation Dynamics. Springer, Berlin, pp 21–58

    Google Scholar 

  56. Helbing D, Buzna L, Werner T (2003) Self-organized pedestrian crowd dynamics and design solutions. Traffic Forum, pp 2003-12

    Google Scholar 

  57. Helbing D, Buzna L, Johansson A, Werner T (2005) Self-organized pedestrian crowd dynamics: Experiments, simulations, and design solutions. Transp Sci 39:1–24

    Google Scholar 

  58. Helbing D, Johansson A, Al-Abideen HZ (2007) The dynamics of crowd disasters: An empirical study. Phys Rev E 75:046109

    Google Scholar 

  59. Helbing D, Johannson A, Al-Abideen HZ (2007) Crowd turbulence: the physics of crowd disasters. In: The Fifth International Conference on Nonlinear Mechanics, ICNM-V, Shanghai, pp 967–969

    Google Scholar 

  60. Henderson LF (1971) The statistics of crowd fluids. Nature 229:381–383

    CAS  Google Scholar 

  61. Henderson LF (1974) On the fluid mechanics of human crowd motion. Transp Res 8:509–515

    Google Scholar 

  62. Hoogendoorn SP (2003) Walker behaviour modelling by differential games. In: Emmerich H, Nestler B, Schreckenberg M (eds) Interface and transport dynamics. Lecture notes in Computational Science and Engineering, vol 32. Springer, Berlin, pp 275–294

    Google Scholar 

  63. Hoogendoorn SP, Bovy PHL (2003) Simulation of pedestrian flows by optimal control and differential games. Optim Control Appl Meth 24:153

    Google Scholar 

  64. Hoogendoorn SP, Daamen W (2005) Pedestrian behavior at bottlenecks. Transp Sci 39 2:0147–0159

    Google Scholar 

  65. Hoogendoorn SP, Bovy PHL, Daamen W (2002) Microscopic pedestrian wayfinding and dynamics modelling. In: Schreckenberg M, Sharma SD (eds) Pedestrian and Evacuation Dynamics. Springer, Berlin, pp 123–154

    Google Scholar 

  66. Hoogendoorn SP, Daamen W, Bovy PHL (2003) Microscopic pedestrian traffic data collection and analysis by walking experiments: Behaviour at bottlenecks. In: Galea ER (ed) Pedestrian and Evacuation Dynamics 2003. CMS Press, London, pp 89–100

    Google Scholar 

  67. Hoskin K (2004) Fire protection and evacuation procedures of stadia venues in new zealand. Master's thesis, University of Canterburry

    Google Scholar 

  68. Hughes RL (2000) The flow of large crowds of pedestrians. Math Comput Simul 53:367–370

    Google Scholar 

  69. Hughes RL (2002) A continuum theory for the flow of pedestrians. Transp Res Part B 36:507–535

    Google Scholar 

  70. International Maritime Organization (IMO) (2000) International Code of Safety for High-Speed Craft, 2000 (2000 HSC Code). Technical report, Resolution MSC 97(73)

    Google Scholar 

  71. International Organization for Standardization (2000) ISO-TR-13387-8-1999 Fire safety engineering – part 8: Life safety – occupant behaviour, location and condition. Technical report

    Google Scholar 

  72. Jian L, Lizhong Y, Daoling Z (2005) Simulation of bi-direction pedestrian movement in corridor. Physica A 354:619

    Google Scholar 

  73. Johnson NR (1987) Panic at “The Who Concert Stampede”: An Empirical Assessment. Soc Probl 34(4):362–373

    Google Scholar 

  74. Jungermann H, Göhlert C (2000) Emergency evacuation from double-deck aircraft. In: Cottam MP, Harvey DW, Pape RP, Tait J (eds) Foresight and Precaution. Proceedings of ESREL 2000, SARS and SRA. Europe Annual Conference, Rotterdam, pp 989–992

    Google Scholar 

  75. Kashiwagi T (ed) (1994) Fire Safety Science – 4th international Symposium Proceedings. Interscience, West Yard House, Guildford. The International Association for Fire Safety Science. Grove, London

    Google Scholar 

  76. Kaufman M (2007) Lane Formation in Counterflow Situations of Pedestrian Traffic. Master's thesis, Universität Duisburg-Essen

    Google Scholar 

  77. Keating JP (1982) The myth of panic. Fire J May:57–62

    Google Scholar 

  78. Kendik E (1983) Determination of the evacuation time pertinent to the projected area factor in the event of total evacuation of high-rise office buildings via staircases. Fire Saf J 5:223–232

    Google Scholar 

  79. Kendik E (1984) Die Berechnung der Personenströme als Grundlage für die Bemessung von Gehwegen in Gebäuden und um Gebäude. Ph.D. thesis, TU Wien

    Google Scholar 

  80. Kendik E (1986) Designing escape routes in buildings. Fire Technol 22:272–294

    Google Scholar 

  81. Kerner BS (2004) The Physics of Traffic. Springer, Heidelberg

    Google Scholar 

  82. Kirchner A (2003) Modellierung und statistische Physik biologischer und sozialer Systeme. Dissertation, Universität zu Köln

    Google Scholar 

  83. Kirchner A, Schadschneider A (2002) Simulation of evacuation processes using a bionics-inspired cellular automaton model for pedestrian dynamics. Physica A 312:260–276

    Google Scholar 

  84. Kirchner A, Namazi A, Nishinari K, Schadschneider A (2003) Role of conflicts in the floor field cellular automaton model for pedestrian dynamics. In: Galea ER (ed) Pedestrian and Evacuation Dynamics 2003. CMS Press, London, pp 51

    Google Scholar 

  85. Kirchner A, Nishinari K, Schadschneider A (2003) Friction effects and clogging in a cellular automaton model for pedestrian dynamics. Phys Rev E 67:056122

    Google Scholar 

  86. Kirchner A, Klüpfel H, Nishinari K, Schadschneider A, Schreckenberg M (2004) Discretization effects and the influence of walking speed in cellular automata models for pedestrian dynamics. J Stat Mech 10:P10011

    Google Scholar 

  87. Klüpfel H (2003) A Cellular Automaton Model for Crowd Movement and Egress Simulation. Dissertation, University Duisburg–Essen

    Google Scholar 

  88. Klüpfel H (2006) The simulation of crowds at very large events. In: Schadschneider A, Pöschel T, Kühne R, Schreckenberg M, Wolf DE (eds) Traffic and Granular Flow 05. Springer, Berlin, pp 341–346

    Google Scholar 

  89. Klüpfel H, Meyer-König T, Wahle J, Schreckenberg M (2000) Microscopic simulation of evacuation processes on passenger ships. In: Bandini S, Worsch T (eds) Theory and Practical Issues on Cellular Automata. Springer, Berlin

    Google Scholar 

  90. Klüpfel H, Meyer-König T, Schreckenberg M (2001) Empirical data on an evacuation exercise in a movie theater. Technical report, University Duisburg‐Essen

    Google Scholar 

  91. Ko SY (2003) Comparison of evacuation times using Simulex and EvacuatioNZ based on trial evacuations. Fire Engineering Research Report 03/9, University of Canterbury

    Google Scholar 

  92. Kretz T (2007) Pedestrian Traffic – Simulation and Experiments. Dissertation, Universität Duisburg‐Essen

    Google Scholar 

  93. Kretz T, Grünebohm A, Schreckenberg M (2006) Experimental study of pedestrian flow through a bottleneck. J Stat Mech P10014

    Google Scholar 

  94. Kretz T, Grünebohm A, Kaufmann M, Mazur F, Schreckenberg M (2006) Experimental study of pedestrian counterflow in a corridor. J Stat Mech P10001

    Google Scholar 

  95. Kretz T, Grünebohm A, Keßel A, Klüpfel H, Meyer-König T, Schreckenberg M (2008) Upstairs walking speed distributions on a long stair. Saf Sci 46:72–78

    Google Scholar 

  96. Kuligowski ED, Milke JA (2005) A perfomance-based egress analysis of a hotel building using two models. J Fire Prot Eng 15:287–305

    Google Scholar 

  97. Kuligowski ED, Peacock RD (2005) A review of building evacuation models. Technical report 1471. National Institute of Standards and Technology, Gaithersburg

    Google Scholar 

  98. Lakoba TI, Kaup DJ, Finkelstein NM (2005) Modifications of the Helbing-Molnár-Farkas-Vicsek social force model for pedestrian evolution. Simulation 81(5):339–352

    Google Scholar 

  99. Lam WHK, Lee JYS, Chan KS, Goh PK (2003) A generalised function for modeling bi-directional flow effects on indoor walkways in Hong Kong. Transp Res A: Policy Pract 37:789–810

    Google Scholar 

  100. Laur U, Jaakula H, Metsaveer J, Lehtola K, Livonen H, Karppinen T, Eksborg AL, Rosengren H, Noord O (1997) Final Report on the Capsizing on 28 September 1994 in the Baltic Sea of the Ro-Ro Passenger Vessel MV Estonia. Technical report. The Joint Accident Investigation Commission of Estonia, Finland and Sweden

    Google Scholar 

  101. LeBon G (1895) Lois Psychlogiques De L'evolution Des Peuples. Alcan, Paris

    Google Scholar 

  102. Leutzbach W (1988) Introduction to the Theory of Traffic Flow. Springer, Berlin

    Google Scholar 

  103. Lewin K (1951) Field Theory in Social Science. Harper, New York

    Google Scholar 

  104. Lord J, Meacham B, Moore A, Fahy R, Proulx G (2005) Guide for evaluating the predictive capabilities of computer egress models. Technical report NIST GCR 06–886, NIST, Gaithersburg

    Google Scholar 

  105. Lovas GG (1994) Modeling and simulation of pedestrian traffic flow. Transp Res B 28V:429

    Google Scholar 

  106. Maniccam S (2003) Traffic jamming on hexagonal lattice. Physica A 321:653

    Google Scholar 

  107. Maniccam S (2005) Effects of back step and update rule on congestion of mobile objects. Physica A 346:631

    Google Scholar 

  108. Marconi S, Chopard B (2002) A multiparticle lattice gas automata model for a crowd. In: Cellular Automata. Lecture Notes Computer Science, vol 2493. Springer, Berlin, pp 231

    Google Scholar 

  109. Mawson AR (2005) Understanding mass panic and other collective responses to threat and disaster. Psychiatry 68:95–113

    Google Scholar 

  110. Melinek SJ, Booth S (1975) An analysis of evacuation times and the movement of crowds in buildings. Technical report CP 96/75, BRE

    Google Scholar 

  111. Meyer-König T, Klüpfel H, Schreckenberg M (2001) A microscopic model for simulating mustering and evacuation processes onboard passenger ships. In: KH Drager (ed) Proceedings of the International Emergency Management Society Conference. The International Emergency Management Society, Oslo

    Google Scholar 

  112. Meyer-König T, Klüpfel H, Schreckenberg M (2002) Assessment and analysis of evacuation processes on passenger ships by microscopic simulation. In: Schreckenberg M, Sharma SD (eds) Pedestrian and Evacuation Dynamics. Springer, Berlin, pp 297–302

    Google Scholar 

  113. Mintz A (1951) Non-adaptive group behaviour. J Abnorm Soc Psychol 46:150–159

    CAS  Google Scholar 

  114. Molnár P (1995) Modellierung und Simulation der Dynamik von Fußgängerströmen. Dissertation, Universität Stuttgart

    Google Scholar 

  115. Mori M, Tsukaguchi H (1987) A new method for evaluation of level of service in pedestrian facilities. Transp Res 21A(3):223–234

    Google Scholar 

  116. Morrall JF, Ratnayake LL, Seneviratne PN (1991) Comparison of CBD pedestrian characteristics in Canada and Sri Lanka. In: Transportation Research Record 1294. TRB, National Research Council, Washington DC, pp 57–61

    Google Scholar 

  117. MSA (1997) Report on Exercise Invicta. Technical report. Marine Safety Agency, Southhampton

    Google Scholar 

  118. MSC-Circ.1033. Interim guidelines for evacuation analyses for new and existing passenger ships. Technical report, International Maritime Organization, Marine Safety Committee, London, June, 6th 2002. MSC/Circ. 1033

    Google Scholar 

  119. MSC-Circ.1166. Guidelines for a simplified evacuation analysis for high-speed passenger craft. Technical report, International Maritime Organisation, 2005

    Google Scholar 

  120. Muir HC (1997) Airplane of the 21st century: Challenges in safety and survivability. International Conference on Aviation Safety and Security in the 21st Century, White House Commission on Aviation Safety and Security, Washington

    Google Scholar 

  121. Muir HC, Bottomley DM, Marrison C (1996) Effects of motivation and cabin configuration on emergency aircraft evacuation behavior and rates of egress. Int J Aviat Psychol 6(1):57–77

    Google Scholar 

  122. Müller K (1981) Zur Gestaltung und Bemessung von Fluchtwegen für die Evakuierung von Personen aus Bauwerken auf der Grundlage von Modellversuchen. Dissertation, Technische Hochschule Magdeburg

    Google Scholar 

  123. Müller W (1966) Die Beurteilung von Treppen als Rückzugsweg in mehrgeschossigen Gebäuden. Unser Brandschutz – Wissenschaftlich-Technische Beil 3:65–70; to be continued in 4/1966

    Google Scholar 

  124. Müller W (1966) Die Beurteilung von Treppen als Rückzugsweg in mehrgeschossigen Gebäuden. Unser Brandschutz – Wissenschaftlich-Technische Beil 4:93–96; continuation from 3/1966

    Google Scholar 

  125. Müller W (1968) Die Überschneidung der Verkehrsströme bei dem Berechnen der Räumungszeit von Gebäuden. Unser Brandschutz – Wissenschaftlich-Technische Beil 4:87–92

    Google Scholar 

  126. Müller W (1970) Untersuchung über zulässige Räumungszeiten und die Bemessung von Rückzugswegen in Gebäuden. Habilitation, TU Dresden, Dresden

    Google Scholar 

  127. Muramatsu M, Nagatani T (2000) Jamming transition in two-dimensional pedestrian traffic. Physica A 275:281–291

    Google Scholar 

  128. Muramatsu M, Nagatani T (2000) Jamming transition of pedestrian traffic at crossing with open boundary conditions. Physica A 286:377–390

    Google Scholar 

  129. Muramatsu M, Irie T, Nagatani T (1999) Jamming transition in pedestrian counter flow. Physica A 267:487–498

    Google Scholar 

  130. Argebau (2005) MVStättV – Erläuterungen: Musterverordnung über den Bau und Betrieb von Versammlungsstätten. Erläuterungen, Juni 2005

    Google Scholar 

  131. Nagai R, Nagatani T (2006) Jamming transition in counter flow of slender particles on square lattice. Physica A 366:503

    Google Scholar 

  132. Nagai R, Fukamachi M, Nagatani T (2006) Evacuation of crawlers and walkers from corridor through an exit. Physica A 367:449–460

    Google Scholar 

  133. Nagel K, Schreckenberg M (1992) A cellular automaton model for freeway traffic. J Phys I 2:2221

    Google Scholar 

  134. Nakayama A, Hasebe K, Sugiyama Y (2005) Instability of pedestrian flow and phase structure in a two-dimensional optimal velocity model. Phys Rev E 71:036121

    Google Scholar 

  135. Navin PD, Wheeler RJ (1969) Pedestrian flow characteristics. Traffic Eng 39:31–36

    Google Scholar 

  136. Nelson HE, Mowrer FW (2002) Emergency movement. In: DiNenno PJ (ed) SFPE Handbook of Fire Protection Engineering, 3rd edn. National Fire Protection Association, Bethesda, p 367

    Google Scholar 

  137. National Fire Protection Association (2007) NFPA 130: Standard for Fixed Guideway Transit and Passenger Rail Systems.

    Google Scholar 

  138. Norwegian Ministry of Justice and Police (2000) The High-Speed Craft MS Sleipner Disaster, 26 November 1999. Official Norwegian Reports 2000:31, Oslo

    Google Scholar 

  139. Oeding D (1963) Verkehrsbelastung und Dimensionierung von Gehwegen und anderen Anlagen des Fußgängerverkehrs. Forschungsbericht, vol 22. Technische Hochschule Braunschweig

    Google Scholar 

  140. O'Flaherty CA, Parkinson MH (1972) Movement in a city centre footway. Traffic Eng Control, p 434

    Google Scholar 

  141. Okazaki S, Matsushita S (1993) A study of simulation model for pedestrian movement with evacuation and queuing. In: Smith RA, Dickie JF (eds) Proceedings International Conference Engineering Crowd Safety. Elsevier, Amsterdam, pp 271

    Google Scholar 

  142. Older SJ (1968) Movement of pedestrians on footways in shopping streets. Traffic Eng Control 10:160–163

    Google Scholar 

  143. Owen M, Galea ER, Lawrence PJ, Filippidis L (1998) AASK – aircraft accident statistics and knowledge: a database of human experience in evacuation, derived from aviation accident reports. Aero J 102:353–363

    Google Scholar 

  144. Pauls JL (1971) Evacuation drill held in the b. c. hydro building, 26 june 1969. Building Research Note 80, National Republican Congressional Committee

    Google Scholar 

  145. Pauls JL (1995) Movement of people. In: DiNenno PJ, Beyler CL, Custer RLP, Walton WD, Watts JM, Drysdale D, Hall JR (eds) SFPE Handbook of Fire Protection Engineering, 2nd edn. National Fire Protection Association, Quincy, p 263

    Google Scholar 

  146. Pauls JL, Fruin JJ, Zupan JM (2007) Minimum stair width for evacuytion, overtaking movement and counterflow – technical bases and suggestions for the past, present and future. In: Waldau N, Gattermann P, Knoflacher H, Schreckenberg M (eds) Pedestrian and Evacuation Dynamics 2005. Springer, Berlin, pp 57–69

    Google Scholar 

  147. Paulsen T, Soma H, Schneider V, Wiklund J, Lovas G (1995) Evaluation of simulation models of evacuating from complex spaces. SINTEF Report STF75 A95020. SINTEF, Trondheim

    Google Scholar 

  148. Polus A, Joseph JL, Ushpiz A (1983) Pedestrian flow and level of service. J Transp Eng 109(1):46–56

    Google Scholar 

  149. Popkov V, Schütz G (1999) Steady-state selection in driven diffusive systems with open boundaries. Europhys Lett 48:257

    Google Scholar 

  150. Predtechenskii VM, Milinskii AI (1969) Planing for foot traffic flow in buildings. Amerind Publishing, New Dehli, 1978. Translation of: Proekttirovanie Zhdaniis Uchetom Organizatsii Dvizheniya Lyuddskikh Potokov, Stroiizdat Publishers, Moscow

    Google Scholar 

  151. Predtetschenski WM, Milinski AI (1971) Personenströme in Gebäuden – Berechnungsmethoden für die Modellierung. Müller, Köln-Braunsfeld

    Google Scholar 

  152. Predtetschenski WM, Cholstschewnikow WW, Völkel H (1972) Vereinfachte Berechnung der Umformung von Personenströmen auf Wegabschnitten mit begrenzter Länge. Unser Brandschutz Wissenschaftlich-Technische Beil 6:90–94

    Google Scholar 

  153. Purser DA, Bensilium M (2001) Quantification of behaviour for engineering design standards and escape time calculations. Saf Sci 38(2):158–182

    Google Scholar 

  154. Pushkarev B, Zupan JM (1975) Capacity of walkways. Transp Res Rec 538:1–15

    Google Scholar 

  155. Quarantelli EL (1960) Images of withdrawal behavior in disasters: Some basic misconceptions. Soc Probl 8:63–79

    Google Scholar 

  156. Quarantelli EL (2001) The sociology of panic. In: Smelser NJ, Baltes PB (eds) International Encyclopedia of the Social and Behavioral Sciences. Pergamon, New York, pp 11020–11030

    Google Scholar 

  157. Revi A, Singh AK (2007) Cyclone and storm surge, pedestrian evacuation and emergency response in India. In: Waldau N, Gattermann P, Knoflacher H, Schreckenberg M (eds) Pedestrian and Evacuation Dynamics 2005. Springer, Berlin, pp 119–130

    Google Scholar 

  158. Rex M, Löwen H (2007) Lane formation in oppositely charged colloids driven by an electric field: Chaining and two-dimensional crystallization. Phys Rev E 75:051402

    Google Scholar 

  159. Rickert M, Nagel K, Schreckenberg M, Latour A (1996) Two lane traffic simulations using cellular automata. Physica A 231:534

    Google Scholar 

  160. Rogsch C (2005) Vergleichende Untersuchungen zur dynamischen Simulation von Personenströmen. Technical report JUEL-4185. Forschungszentrum Jülich

    Google Scholar 

  161. Rogsch C, Klingsch W, Seyfried A, Weigel H (2007) How reliable are commercial software-tools for evacuation calculation? In: Interflam 2007 – Conference Proceedings. Interscience Communication Ltd, Greenwich, London, pp 235–245

    Google Scholar 

  162. Rogsch C, Klingsch W, Seyfried A, Weigel H (2007) Prediction accuracy of evacuation times for high-rise buildings and simple geometries by using different software-tools. In Traffic and Granular Flow 2007. Preprint

    Google Scholar 

  163. Roitman MJ (1966) Die Evakuierung von Menschen aus Bauwerken. Staatsverlag der Deutschen Demokratischen Republik

    Google Scholar 

  164. Rothman DH, Zaleski S (1994) Lattice-gas models of phase separation: Interfaces, phase transitions, and multiphase flow. Rev Mod Phys 66:1417

    CAS  Google Scholar 

  165. Rothman DH, Zaleski S (1997) Lattice-Gas Cellular Automata. Cambridge University Press, Cambridge

    Google Scholar 

  166. Saloma C, Perez GJ (2007) Herding in real escape panic. In: Waldau N, Gattermann P, Knoflacher H, Schreckenberg M (eds) Pedestrian and Evacuation Dynamics 2005. Springer, Berlin, pp 471–479

    Google Scholar 

  167. Schadschneider A (2002) Cellular automaton approach to pedestrian dynamics – theory. In: Schreckenberg M, Sharma SD (eds) Pedestrian and Evacuation Dynamics. Springer, Berlin, pp 75–86

    Google Scholar 

  168. Schelajew J, Schelajewa E, Semjonow N (2000) Nikolaus II. Der letzte russische Zar. Bechtermünz, Augsburg

    Google Scholar 

  169. Schneider U, Kath K, Oswald M, Kirchberger H (2006) Evakuierung und Verhalten von Personen im Brandfall unter spezieller Berücksichtigung von schienengebundenen Fahrzeugen. Technical report 12, TU Wien

    Google Scholar 

  170. Schreckenberg M, Sharma SD (eds) (2007) Pedestrian and Evacuation Dynamics. Springer, Berlin

    Google Scholar 

  171. Schultz M, Lehmann S, Fricke H (2007) A discrete microscopic model for pedestrian dynamics to manage emergency situations in airport terminals. In: Waldau N, Gattermann P, Knoflacher H, Schreckenberg M (eds) Pedestrian and Evacuation Dynamics 2005. Springer, Berlin, pp 389–395

    Google Scholar 

  172. Schütz GM (2001) Exactly solvable models for many-body systems. In: Domb C, Lebowitz JL (eds) Phase Transitions and Critical Phenomena, vol 19. Academic Press, Amsterdam

    Google Scholar 

  173. Seeger PG, John R (1978) Untersuchung der Räumungsabläufe in Gebäuden als Grundlage für die Ausbildung von Rettungswegen, Teil III: Reale Räumungsversuche. Technical report T395. Forschungsstelle für Brandschutztechik an der Universität Karlsruhe (TH)

    Google Scholar 

  174. Seyfried A, Steffen B, Klingsch W, Boltes M (2005) The fundamental diagram of pedestrian movement revisited. J Stat Mech P10002

    Google Scholar 

  175. Seyfried A, Steffen B, Lippert T (2006) Basics of modelling the pedestrian flow. Physica A 368:232–238

    Google Scholar 

  176. Seyfried A, Rupprecht T, Passon O, Steffen B, Klingsch W, Boltes M (2007) Capacity estimation for emergency exits and bootlenecks. In: Interflam 2007 – Conference Proceedings. Interscience Communication Ltd, Greenwich, London

    Google Scholar 

  177. Shestopal VO, Grubits SJ (1994) Evacuation model for merging traffic flows in multi-room and multi-storey buildings. In: Kashiwagi T (ed) Fire Safety Science – 4th international Symposium Proceedings. Interscience, West Yard House, Guildford. The International Association for Fire Safety Science. Grove, London, pp 625–632

    Google Scholar 

  178. Sime JD (1990) The Concept of Panic. In: Canter D (ed) Fires and Human Behaviour, vol 1. Wiley, London, pp 63–81

    Google Scholar 

  179. Smelser NJ (1962) Theory of Collective Behavior. Free Press, New York

    Google Scholar 

  180. Still KG (2001) Crowd Dynamics, Ph.D. thesis, University of Warwick

    Google Scholar 

  181. Tajima Y, Nagatani T (2002) Clogging transition of pedestrian flow in t-shaped channel. Physica A 303:239–250

    Google Scholar 

  182. Taylor PM (1990) The Hillsborough Stadium Disaster: Inquiry Final Report. Technical report, Great Britain Home Office

    Google Scholar 

  183. Templer J (1992) The Staircase. MIT Press, Cambridge

    Google Scholar 

  184. Thompson PA, Marchant EW (1994) Simulex; developing new computer modelling techniques for evaluation. In: Kashiwagi T (ed) Fire Safety Science – 4th international Symposium Proceedings. Interscience, West Yard House, Guildford. The International Association for Fire Safety Science. Grove, London, pp 613–624

    Google Scholar 

  185. Togawa K (1955) Study on fire escapes basing on the observation of multitude currents. Report of the building research institute. Ministry of Construction, Japan (in Japanese)

    Google Scholar 

  186. Tsuji Y (2003) Numerical simulation of pedestrian flow at high densities. In: Galea ER (ed) Pedestrian and Evacuation Dynamics 2003. CMS Press, London, p 27

    Google Scholar 

  187. Tubbs JS, Meacham B (2007) Egress Design Solutions – A Guide to Evacuation and Crowd Management Planning. Wiley, New Jersey

    Google Scholar 

  188. Virkler MR, Elayadath S (1994) Pedestrian density characteristics and shockwaves. In: Akcelik R (ed) Proceedings of the Second International Symposium on Highway Capacity, vol 2. Australian Road Research Board, Sydney, pp 671–684

    Google Scholar 

  189. Waldau N (2002) Massenpanik in Gebäuden. Diploma thesis, Technische Universität Wien

    Google Scholar 

  190. Waldau N, Gattermann P, Knoflacher H, Schreckenberg M (eds) (2006) Pedestrian and Evacuation Dynamics 2005. Springer, Berlin

    Google Scholar 

  191. Weckman LS, Mannikkö S (1999) Evacuation of a theatre: Exercise vs calculations. Fire Mater 23:357–361

    Google Scholar 

  192. Weidmann U (1993) Transporttechnik der Fußgänger – Transporttechnische Eigenschaften des Fußgängerverkehrs (Literaturauswertung). Schriftenreihe des IVT 90, ETH Zürich, 3 1993. Zweite, ergänzte Auflage (in German)

    Google Scholar 

  193. Weifeng F, Lizhong Y, Weicheng F (2003) Simulation of bi-directional pedestrian movement using a cellular automata model. Physica A 321:633–640

    Google Scholar 

  194. Wolf DE, Grassberger P (eds) (1996) Friction, Arching, Contact Dynamics. World Scientific, Singapore

    Google Scholar 

  195. Yamamoto K, Kokubo S, Nishinari K (2006) New approach for pedestrian dynamics by real-coded cellular automata (rca). In: El Yacoubi S, Chopard B, Bandini S (eds) Cellular Automata – 7th International Conference on Cellular Automata for Research and Industry, ACRI 2006, Perpignan. Springer, Berlin, pp 728–731

    Google Scholar 

  196. Yamamoto K, Kokubo S, Nishinari K (2007) Simulation for pedestrian dynamics by real-coded cellular automata (rca). Physica A 379:654

    Google Scholar 

  197. Yamori K (1998) Going with the flow: Micro-macro dynamics in the macrobehavioral patterns of pedestrian crowds. Psychol Rev 105(3):530–557

    Google Scholar 

Books and Reviews

  1. Chopard B, Droz M (1998) Cellular automaton modeling of physical systems. Cambridge University Press, Cambridge

    Google Scholar 

  2. Chowdhury D, Nishinari K, Santen L, Schadschneider A (2008) Stochastic transport in complex systems: From molecules to vehicles. Elsevier, Amsterdam

    Google Scholar 

  3. DiNenno PJ (ed) (2002) SFPE Handbook of Fire Protection Engineering. National Fire Protection Association, Quincy

    Google Scholar 

  4. Galea ER (ed) (2003) Pedestrian and Evacuation Dynamics '03. CMS Press, London

    Google Scholar 

  5. Ped-Net collaboration. Webpage www.ped-net.org (including discussion forum)

  6. Predtechenskii VM, Milinskii AI (1978) Planing for foot traffic flow in buildings. Amerint Publishing, New Delhi

    Google Scholar 

  7. Schadschneider A, Pöschel T, Kühne R, Schreckenberg M, Wolf DE (eds) (2007) Traffic and Granular Flow '05. Springer, Berlin (see also previous issues of this conference series)

    Google Scholar 

  8. Tubbs JS, Meacham BJ (2007) Egress Design Solution – A Guide to Evacuation and Crowd Management Planning. Wiley, New Jersey

    Google Scholar 

  9. Waldau N, Gattermann P, Knoflacher H, Schreckenberg M (eds) (2007) Pedestrian and Evacuation Dynamics '05. Springer, Berlin

    Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge the contribution of Tim Meyer-König (the developer of PedGo) and Michael Schreckenberg, Ansgar Kirchner, Bernhard Steffen for many fruitful discussions and valuable hints.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag

About this entry

Cite this entry

Schadschneider, A., Klingsch, W., Klüpfel, H., Kretz, T., Rogsch, C., Seyfried, A. (2011). Evacuation Dynamics: Empirical Results, Modeling and Applications. In: Meyers, R. (eds) Extreme Environmental Events. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-7695-6_29

Download citation

Publish with us

Policies and ethics