Extreme Environmental Events

2011 Edition
| Editors: Robert A. Meyers (Editor-in-Chief)

Earthquake Scaling Laws

  • Raul Madariaga
Reference work entry
DOI: https://doi.org/10.1007/978-1-4419-7695-6_22

Article Outline


Definition of the Subject


Earthquakes and Seismic Radiation

Earthquake Fault Models: The Scaling of Geometry and Stress

Earthquake Dynamics and the Scaling of Energy

Kinematics and Statistical Models for Fault Slip

Future Directions




Energy Release Rate Stress Drop Seismic Moment Seismic Source Corner Frequency 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
This is a preview of subscription content, log in to check access.



This research was partially funded by the SEISMULATORS contract with ANR under program Catastrophes Telluriques et Tsunamis, and by the Research training network SPICE of the 7th PCRD of the European Union. I am deeply indebted to Luis Rivera, Martin Mai and Art McGarr for their careful and patient review of an initial version of this paper.


  1. 1.
    Abercrombie RE (1995) Earthquake source scaling relationships from −1 to 5 ML using seismograms recorded at 2.5 km depth. J Geophys Res 100:24015–24036CrossRefGoogle Scholar
  2. 2.
    Abercrombie RE, Rice JR (2005) Can observations of earthquake scaling constrain slip weakening? Geophys J Int 162:406–424CrossRefGoogle Scholar
  3. 3.
    Aki K (1966) Generation and propagation of G waves from the Niigata earthquake of June 16, (1964) part 2. Estimation of earthquake movement, released energy, and stress-strain drop from G wave spectrum. Bull Earthq Res Inst Univ Tokyo 44:23–88Google Scholar
  4. 4.
    Aki K (1967) Scaling law of seismic spectrums. J Geophys Res 72:1217–1231CrossRefGoogle Scholar
  5. 5.
    Aki K, Richards PG (2002) Quantitative Seismology, 2nd edn. University Science Books, SausalitoGoogle Scholar
  6. 6.
    Andrews DJ (1980) A stochastic fault model: 1. Static case. J Geophys Res 85:3867–3877CrossRefGoogle Scholar
  7. 7.
    Bernard P, Herrero A (1994) A kinematic self-similar rupture process for earthquakes. Bull Seismol Soc Am 84:1216–1228Google Scholar
  8. 8.
    Bernard P, Madariaga R (1984) A new asymptotic method for the modeling of near-field accelerograms. Bull Seismol Soc Am 74:539–557Google Scholar
  9. 9.
    Bernard P, Herrero A, Berge C (1996) Modeling directivity of heterogeneous earthquake ruptures. Bull Seismol Soc Am 86:1149–1160Google Scholar
  10. 10.
    Beroza G, Kanamori H (2007) Comprehensive overview in Treatise on geophysics. In: Schubert G (ed) Earthquake Seismology. Elsevier, AmsterdamGoogle Scholar
  11. 11.
    Boatwright J (1978) Detailed spectral analysis of two small New York State earthquakes. Bull Seismol Soc Am 68:1177–1131Google Scholar
  12. 12.
    Boatwright J (1980) A spectral theory for circular seismic sources: Simple estimates of source dimension, dynamic stress drop, and radiated energy. Bull Seism Soc Am 70:1–26Google Scholar
  13. 13.
    Boatwright J (1982) A dynamic model for far field acceleration. Bull Seism Soc Am 72:1049–1068Google Scholar
  14. 14.
    Boatwright J (1988) The seismic radiation from composite models of faulting. Bull Seism Soc Am 78:489–508Google Scholar
  15. 15.
    Boatwright J, Fletcher JB (1985) The partition of radiated energy between P and S waves. Bull Seismol Soc Am 75:361–376Google Scholar
  16. 16.
    Bouchon M (1997) The state of stress on some faults of the San Andreas Fault system as inferred from near-field strong‐motion data. Bull Seismol Soc Am 58:367–398Google Scholar
  17. 17.
    Brune JN (1970) Tectonic stress and spectra of seismic shear waves from earthquakes. J Geophys Res 75:4997–5009CrossRefGoogle Scholar
  18. 18.
    Brune JN (1971) Correction. J Geophy Res 76:5002CrossRefGoogle Scholar
  19. 19.
    Brune JN, Archuleta RJ, Hartzell S (1979) Far-field S wave spectra, corner frequencies, and pulse shapes. J Geophys Res 84:2262–2272CrossRefGoogle Scholar
  20. 20.
    Eshelby JD (1957) The elastic field of an ellipsoid inclusion and related Problems. Proc R Soc Lond A 241:376–396CrossRefGoogle Scholar
  21. 21.
    Freund LB (1972) Energy flow into the tip of an extending crack in an elastic solid. J Elast 2:341–348CrossRefGoogle Scholar
  22. 22.
    Freund LB (1989) Fracture Dynamics. Cambridge University Press, CambridgeGoogle Scholar
  23. 23.
    Gutenberg B, Richter CF (1942) Earthquake magnitude, intensity, energy, and acceleration. Bull Seism Soc Am 32:163–191Google Scholar
  24. 24.
    Gutenberg B, Richter CF (1956) Earthquake magnitude, intensity, energy, and acceleration (second paper). Bull Seism Soc Am 46:105–145Google Scholar
  25. 25.
    Hanks TC (1979) b values and \({w^{-g}}\) seismic source models: Implications for tectonic stress variations along active crustal fault zones and the estimation of high‐frequency ground motion. J Geophs Res 84:2235–2242CrossRefGoogle Scholar
  26. 26.
    Hanks TC (1981) The corner frequency shift, earthquake source models, and Q. Bull Seismol Soc Am 71:597–612Google Scholar
  27. 27.
    Hanks TC (1982) fmax. Bull Seismol Soc Am 72:1867–1879Google Scholar
  28. 28.
    Hanks TC, Kanamori H (1979) A moment magnitude scale. J Geophys Res 84:2348–2350CrossRefGoogle Scholar
  29. 29.
    Hanks T, Thatcher W (1972) A graphical representation of seismic source parameters. J Geophys Res 77:4393–4405CrossRefGoogle Scholar
  30. 30.
    Haskell NA (1964) Total energy spectral density of elastic wave radiation from propagating faults. Bull Seism Soc Am 54:1811–1841Google Scholar
  31. 31.
    Haskell NA (1966) Total energy spectral density of elastic wave radiation from propagating faults: Part II. A statistical source model. Bull Seism Soc Am 56:125–140Google Scholar
  32. 32.
    Ide S (2002) Estimation of Radiated energy of finite‐source earthquake models. Bull Seism Soc Am 92:2294–3005CrossRefGoogle Scholar
  33. 33.
    Ide S, Beroza GC (2001) Does apparent stress vary with earthquake size? Geophys Res Letters 28:3349–3352CrossRefGoogle Scholar
  34. 34.
    Ide S, Takeo M (1997) Determination of constitutive relations of fault slip based on seismic wave analysis. J Geophys Res 102(27)379–391Google Scholar
  35. 35.
    Ide S, Beroza GC, Prejean SG, Ellsworth WL (2003) Apparent Break in Earthquake Scaling Due to Path and Site Effects on Deep Borehole Recordings. J Geophys Res 108(B5)2271. doi:10.1029/2001JB001617
  36. 36.
    Jost M, Busselberg LT, Jost O, Harjes HP (1998) Source parameters of injection‐induced microearthquakes at 9 km depth at the KTB deep drilling site, Germany. Bull Seismol Soc Am 88:815–832Google Scholar
  37. 37.
    Joyner WB (1984) A scaling law for the spectra of large earthquakes. Bull Seism Soc Am 74:1167–1188Google Scholar
  38. 38.
    Kanamori H (1977) The energy release in great earthquakes. J Geophys Res 82:2921–2987CrossRefGoogle Scholar
  39. 39.
    Kanamori H, Anderson DL (1975) Theoretical basis of some empirical relations in seismology. Bull Seismol Soc Am 65:2981–2987Google Scholar
  40. 40.
    Kanamori H, Rivera L (2004) Static and Dynamic Scaling Relations for Earthquakes and their implications for Rupture Speed and Stress Drop. Bull Seismol Soc Am 94:314–319. http://www.gps.caltech.edu/faculty/kanamori/static_dynamic_scaling_relations.pdf CrossRefGoogle Scholar
  41. 41.
    Kanamori H, Mori J, Hauksson E, Heaton TH, Hutton LK, Jones LM (1993) Determination of earthquake energy release and M L using Terrascope. Bull Seismol Soc Am 83:330–346Google Scholar
  42. 42.
    Keilis‐Borok VI (1957) Investigation of the mechanism of earthquakes. Tr Inst Geofis Akad Nauk, SSSR 40 (in Russian). (1960) Sov Res Geophys Ser 4 (Engl transl)Google Scholar
  43. 43.
    Kostrov BV (1964) Self‐similar problems of propagation of shear cracks. J Appl Math Mech 28:1077–1087CrossRefGoogle Scholar
  44. 44.
    Kostrov BV (1974) Seismic moment and energy of earthquakes and seismic flow of rock. Izv Earth Phys 1:23–40Google Scholar
  45. 45.
    Kostrov B, Das S (1988) Principles of Earthquake Source Mechanics. Cambridge University Press, CambridgeGoogle Scholar
  46. 46.
    Madariaga R (1976) Dynamics of an expanding circular fault. Bull Seism Soc Am 66:639–666Google Scholar
  47. 47.
    Madariaga R (1977) High frequency radiation from crack (stress drop) models of earthquake fauting. Geophys J R Astr Soc 51:625–651Google Scholar
  48. 48.
    Madariaga R (1978) The dynamic field of Kaskell's rectangular dislocation fault model. Bull Seismol Soc Am 68:869–887Google Scholar
  49. 49.
    Madariaga R (1979) On the relation between seismic moment and stress drop in the presence of stress and strength heterogeneity. J Geophys Res 84:2243–2250CrossRefGoogle Scholar
  50. 50.
    Mai PM, Beroza GC (2000) Source‐scaling properties from finite‐fault rupture models. Bull Seis Soc Am 90(3):604–615. http://www.seismo.ethz.ch/staff/martin/papers/BSSA00scalingRP.pdf CrossRefGoogle Scholar
  51. 51.
    Mai PM, Beroza GC (2002) A spatial random‐field model to characterize complexity in earthquake slip. J Geophys Res 107:2308. doi:10.1029/2001JB000588. http://www.seismo.ethz.ch/staff/martin/papers/JGR02MaiSlipComplex.pdf CrossRefGoogle Scholar
  52. 52.
    Mayeda K, Walker WR (1996) Moment, energy, stress drop, and source spectra of western United States earthquakes from regional coda envelopes. J Geophys Res 101:11195–11208CrossRefGoogle Scholar
  53. 53.
    McGarr A (1999) On relating apparent stress to the stress causing earthquake fault slip. J Geophys Res 104:3003–3011CrossRefGoogle Scholar
  54. 54.
    McGarr A, Fletcher JB (2003) Maximum Slip in Earthquake Fault Zones, Apparent Stress, and Stick-Slip Friction. Bull Seismol Soc Am 93:2355–2362CrossRefGoogle Scholar
  55. 55.
    Ohnaka M (2003) A constitutive scaling law and a unified comprehension for frictional slip failure, shear fracture of intact rock, and earthquake rupture. J Geophys Res 108:B2080. doi:10.1029/2000JB000123 CrossRefGoogle Scholar
  56. 56.
    Ohnaka M, Shen L-F (1999) Scaling of the shear rupture process from nucleation to dynamic propagation: Implications of geometric irregularity of the rupturing surfaces. J Geophys Res 104:817–844CrossRefGoogle Scholar
  57. 57.
    Olsen KB, Madariaga R, Archuleta RJ (1997) Three‐dimensional dynamic simulation of the 1992 Landers Earthquake. Science 278:834–838CrossRefGoogle Scholar
  58. 58.
    Orowan E (1960) Mechanism of seismic faulting. Geol Soc Am Memoir 79:323–345Google Scholar
  59. 59.
    Prieto GA, Shearer PM, Vernon FL, Kilb D (2004) Earthquake source scaling and self‐similarity estimation from stacking P and S spectra. J Geophys Res 109:B08310. doi 10.1029/2004JB003084. http://pangea.stanford.edu/~gprieto/publication/scaling.pdf
  60. 60.
    Rice JR (1980) The mechanics of earthquake rupture. In: Dziewonski AM, Boschi E (eds) Physics of the Earth's Interior. Proceedings of the International School of Physics “Enrico Fermi”, Course 78, 1979, pp 555–569. North Holland, AmsterdamGoogle Scholar
  61. 61.
    Rivera L, Kanamori H (2005) Representations of the radiated energy in earthquakes. Geophy J Int 162:148–155CrossRefGoogle Scholar
  62. 62.
    Richards PG (1973) The dynamic field of a growing plane elliptical shear crack. Int J Solids Struct 9:843–861CrossRefGoogle Scholar
  63. 63.
    Richardson E, Jordan TH (2002) Seismicity in deep gold mines of South Africa: Implications for tectonic earthquakes. Bull Seismol Soc Am 92:1766–1782CrossRefGoogle Scholar
  64. 64.
    Ripperger J, Mai PM (2004) Fast computation of static stress changes on 2D faults from final slip distributions. Geophys Res Let 31:L18610. doi:10.1029/2004GL0594 CrossRefGoogle Scholar
  65. 65.
    Sato T, Hirasawa T (1973) Body wave spectra from propagating shear cracks. J Phys Earth 21:415–431Google Scholar
  66. 66.
    Savage JC (1974) Relation of corner frequency to fault dimensions. J Geophys Res 77:3788–3795CrossRefGoogle Scholar
  67. 67.
    Scholz CH (2002) The mechanics of earthquakes and faulting. Cambridge University Press, CambridgeGoogle Scholar
  68. 68.
    Shearer PM, Prieto GA, Hauksson E (2006) Comprehensive analysis of earthquake source spectra in southern California. J Geophys Res, 111, B06303, doi:10.1029/2005JB003979. http://pangea.stanford.edu/~gprieto/publication/scsn_spectra.pdf CrossRefGoogle Scholar
  69. 69.
    Singh SK, Ordaz M (1994) Seismic energy release in Mexican subduction zone earthquakes. Bull Seismol Soc Am 84:1533–1550Google Scholar
  70. 70.
    Sneddon IN (1951) Fourier Transforms. McGraw‐Hill, New YorkGoogle Scholar
  71. 71.
    Spudich P, Frazer LN (1984) Use of ray theory to calculate high‐frequency radiation from earthquake sources having spatially variable rupture velocity and stress drop. Bull Seismol Soc Am 74:2061–2082Google Scholar
  72. 72.
    Vassiliou MS, Kanamori H (1982) The energy released in earthquakes. Bull Seism Soc Am 72:371–387Google Scholar
  73. 73.
    Wyss M, Brune JN (1968) Seismic moment, stress, and source dimensions for earthquakes in the California‐Nevada region. J Geophys Res 73:4681–4684CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • Raul Madariaga
    • 1
  1. 1.Ecole Normale SuperieureLaboratoire de GéologieParisFrance