Skip to main content

Earthquake Nucleation Process

  • Reference work entry

Article Outline

Glossary

Definition of the Subject

Introduction

Contribution from the Development of Earthquake Early-Warning Systems

Observations of Initial Rupture Processes

Discussion

Future Directions

Acknowledgments

Bibliography

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   599.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Abbreviations

Nucleation process:

The process in which rupture velocity accelerates from quasi‐static to dynamic. The dynamic rupture velocity almost equals the shear wave velocity.

Nucleation zone:

The portion of the fault where rupture velocity accelerates from quasi‐static to dynamic.

Initial rupture process:

The rupture process that precedes the largest slip. This term is used when the acceleration of rupture velocity is not clear. This is a wider concept that includes the earthquake nucleation process. The area where the initial rupture process occurs is called the initial rupture fault.

Slip velocity:

The dislocation velocity at a point on the fault. The rupture velocity is the velocity at which the rupture front is expanding.

Preslip model:

An earthquake source model having a detectable size nucleation zone.

Cascade model:

An earthquake source model in which smaller sub‐events successively trigger larger sub‐events. A sub‐event is the same as a small earthquake if it does not trigger a successive sub‐event.

Stress drop (static stress drop):

The amount of shear stress change at a point on the fault before and after an earthquake. It is proportional to the strain released on the fault.

Dynamic stress drop:

The difference between the initial shear stress and the minimum frictional stress at a point on the fault during fault slip.

Fault strength:

The shear stress level necessary to initiate slip at a point on the fault.

M :

Magnitude. Earthquake size computed basically from waveform amplitudes and focal distances.

Seismic moment:

The most reliable measure of earthquake size which is determined from the products of the rigidity near the fault, the amount of slip, and the area of the fault surface.

M w :

Moment magnitude. Earthquake magnitude derived from the seismic moment.

Bibliography

  1. Abercrombie R, Mori J (1994) Local observations of the onset of a large earthquake, 28 June 1992. Landers, California. Bull Seismol Soc Am 84:725–734

    Google Scholar 

  2. Aki (1967) Scaling law of seismic spectrum. J Geophys Res 72:1217–1231

    Article  Google Scholar 

  3. Allen RM, Kanamori H (2003) The potential for earthquake early warning in Southern California. Science 300(5620):786–789

    Article  CAS  Google Scholar 

  4. Anderson JG, Bodin P, Brune JN, Pince J, Singh SK, Quaas R, Ohnate M (1986) Strong ground motion from the Michoacan, Mexico, earthquake. Science 233:1043–1049

    Article  CAS  Google Scholar 

  5. Andrews DJ (1976) Rupture velocity of plane strain shear cracks. J Geophys Res 81:5679–5687

    Article  Google Scholar 

  6. Asano K, Iwata T (2006) Source process and near-source ground motions of the 2005 West Off Fukuoka Prefecture earthquake. Earth Planet Space 58:93–98

    Google Scholar 

  7. Azimi SA, Kalinin AV, Kalinin VV, Pivovarov BL (1968) Impulse and transient characteristics of media with linear quadratic absorption laws, Izv. Earth Phys 1968(2):88–93

    Google Scholar 

  8. Bak P, Teng C (1989) Earthquakes as self-organized critical phenomenon. J Geophys Res 94:635-15–637-15

    Article  Google Scholar 

  9. Beroza GC, Ellsworth WL (1996) Properties of the seismic nucleation phase. Tectonophysics 261:209–227

    Article  Google Scholar 

  10. Boatwright J (1978) Detailed spectral analysis of two small New York State earthquakes. Bull Seismol Soc Am 68:1117–1131

    Google Scholar 

  11. Brown SR, Scholz CH (1985) Broad bandwidth study of the topography of natural rock surfaces. J Geophys Res 90:12575–12582

    Article  Google Scholar 

  12. Brune JN (1979) Implications of earthquake triggering and rupture propagation for earthquake prediction based on premonitory phenomena. J Geophys Res 84:2195–2198

    Article  Google Scholar 

  13. Cheng X, Fenglin Niu, Silver PG, Horiuchi S, Takai K, Ito H, Iio Y Similar microearthquakes observed in western Nagano, Japan and implications to rupture mechanics. J Geophys Res 112:B04306. doi:10.1029/2006JB004416

  14. Christensen DH, Ruff LJ (1986) Rupture process of the Chilean earthquake, 3 March 1985. Geophys Res Lett 13:721–724

    Article  Google Scholar 

  15. Das S, Scholz CH (1982) Theory of time-dependent rupture in the Earth. J Geophys Res 86:6039–6051

    Article  Google Scholar 

  16. Deichman N (1997) Far-field pulse shapes from circular sources with variable rupture velocities. Bull Seismol Soc Am 87:1288–1296

    Google Scholar 

  17. Dieterich JH (1978) Preseismic fault slip and earthquake prediction. J Geophys Res 83:3940–3948

    Article  Google Scholar 

  18. Dieterich JH (1979) Modelling of rock friction: 1 Experimental results and constitutive equations. J Geophys Res 84:2161–2168

    Article  Google Scholar 

  19. Dieterich JH (1986) A model for the nucleation of earthquake slip. In: Earthquake source mechanics. Geophysical Monograph. Maurice Ewing Series, vol 6. Am Geophys Union, Washington DC, pp 37,36–47

    Google Scholar 

  20. Dodge DA, Beroza GC, Ellsworth WL (1996) Detailed observations of California foreshock sequences: Implications for the earthquake initiation process. J Geophys Res 101(22):371–392

    Google Scholar 

  21. Ellsworth WL, Beroza GC (1995) Seismic evidence for an earthquake nucleation phase. Science 268:851–855

    Article  CAS  Google Scholar 

  22. Ellsworth WL, Beroza GC (1998) Observation of the seismic nucleation phase in the 1995 Ridgecrest, California sequence. Geophys Res Lett 25:401–404

    Article  Google Scholar 

  23. Fukao Y, Furumoto M (1985) Hierarchy in earthquake size distribution. Phys Earth Planet Inter 37:149–168

    Article  Google Scholar 

  24. Furumoto M, Nakanishi I (1983) Source times and scaling relations of large earthquakes. J Geophys Res 88:2191–2198

    Article  Google Scholar 

  25. Hardebeck JL, Hauksson E (2001) The crustal stress field in southern California and its implications for fault mechanics. J Geophys Res 106(21):859–882

    Google Scholar 

  26. Hiramatsu Y, Furumoto M, Nishigami K, Ohmi S (2002) Initial rupture process of microearthquakes recorded by high sampling borehole seismographs at the Nojima fault, central Japan. Phys Earth Planet Inter 132:269–279

    Article  Google Scholar 

  27. Hirata M (2003) The initial rupture process of the 2000 Western Tottori Earthquake. Master Thesis, Kyoto University

    Google Scholar 

  28. Horikawa H (2006) Rupture process of the 2005 West Off Fukuoka Prefecture, Japan, earthquake. Earth Planet Space 58:87–92

    Google Scholar 

  29. Ide S, Beroza GC, Prejean SG, Ellsworth WL (2003) Apparent break in earthquake scaling due to path and site effects on deep borehole recordings. J Geophys Res 108(B5):2271; doi:10.1029/2001JB001617

    Article  Google Scholar 

  30. Iio Y (1992) Slow initial phase of the P-wave velocity pulse generated by microearthquakes. Geophys Res Lett 19:477–480

    Article  Google Scholar 

  31. Iio Y (1995) Observation of the slow initial phase generated by microearthquakes: Implications for earthquake nucleation and propagation. J Geophys Res 100:15333–15349

    Article  Google Scholar 

  32. Iio Y, Ohmi S, Ikeda R, Yamamoto E, Ito H, Sato H, Kuwahara Y, Ohminato T, Shibazaki B, Ando M (1999) Slow initial phase generated by microearthquakes occurred in the Western Nagano prefecture, Japan -the source effect-. Geopys Res Lett 26(13):1969–1972

    Article  Google Scholar 

  33. Iio Y, Kobayashi Y, Tada T (2002) Large earthquakes initiate by the acceleration of slips on the downward extensions of seismogenic faults, Earth Planet. Sci Lett 202:337–343

    CAS  Google Scholar 

  34. Iio Y, Horiuchi S, Ohmi S, Ito H, Kuwahara Y, Yamamoto E, Omura K, Miura K, Shibazaki B, Sato H (2006) Slow initial phase of microearthquakes. Program and abstracts of 2006 fall meeting of the Seismological Society of Japan, A48 (in Japanese)

    Google Scholar 

  35. Ishihara Y, Fukao Y, Yamada I, Aoki H (1992) Rising slope of moment rate functions: the 1989 earthquakes off east coast of Honshu. Geophys Res Lett 19:873–876

    Article  Google Scholar 

  36. Ito S (2003) Study for the initial rupture process of microearthquakes in western Nagano, central Japan, estimated from seismograms recorded in three boreholes. Ph D Thesis, Tohoku University (in Japanese)

    Google Scholar 

  37. Ito S, Ito H, Horiuchi S, Iio Y (2004) Local attenuation in western Nagano, central Japan, estimated from seismograms recorded in three boreholes. Geophys Res Lett 31:L20604; doi:10.1029/2004GL020745

    Article  Google Scholar 

  38. Ito Y, Obara K, Takeda T, Shiomi K, Matsumoto T, Sekiguchi S, Hori S (2006) Initial-rupture fault, main-shock fault, and aftershock faults: Fault geometry and bends inferred from centroid moment tensor inversion of the 2005 West Off Fukuoka Prefecture earthquake. Earth Planet Space 58:69–74

    Google Scholar 

  39. Iwata T, Sekiguchi H (2002) Source process and near-source ground motion during the 2000 Tottori-ken Seibu earthquake (\({M_{w}\,6.8}\)). Reports on Assessments of Seismic local-site effects at plural test sites. MEXT, pp 231–241

    Google Scholar 

  40. Kanamori H, Anderson DL (1975) Theoretical bases for some empirical relations in seismology. Bull Seism Soc Am 65:1073–1095

    Google Scholar 

  41. Kanamori H (1996) Initiation process of earthquakes and its implications for seismic hazard reduction strategy. Proc Natl Acad Sci 93:3726–3731

    Article  CAS  Google Scholar 

  42. Kawanishi R, Iio Y, Yukutake Y, Katao H, Shibutani T (2006) Estimate of the stress field in the region of the 2000 Western Tottori earthquake. Program and abstracts of 2006 fall meeting of the Seismological Society of Japan, P099 (in Japanese)

    Google Scholar 

  43. Kilb D, Gomberg J (1999) The initial subevent of the 1994 Northridge, California, Earthquake – is earthquake size predictable? J Seismol 3:409–420

    Article  Google Scholar 

  44. Lay T, Kanamori H, Ruff L (1982) The asperity model and the nature of large subduction zone earthquakes. Earthq Predict Res 1:3–71

    Google Scholar 

  45. Mandelbrot BB (1982) The fractal geometry of nature. W.H. Freeman, New York

    Google Scholar 

  46. Miura K, Iio Y, Yukutake Y, Takai K, Horiuchi S (2005) The feature of initial motion for waveforms of microearthquakes in Western Nagano, Japan. Program and abstracts of 2005 fall meeting of the Seismological Society of Japan, P103. (in Japanese)

    Google Scholar 

  47. Miyake H, Iwata T, Irikura K (2003) Source characterization for broadband ground motion simulation: Kinematic heterogeneous source model and strong motion generation area. Bull Seism Soc Am 93:2531–2545

    Article  Google Scholar 

  48. Mori J, Kanamori H (1996) Initial rupture of earthquake in the 1995 Ridgecrest, California sequence. Geophys Res Lett 23:2437–2440

    Article  Google Scholar 

  49. Nakamura Y (1988) Proc World Conference on Earthquake Engineering, VII, 6763

    Google Scholar 

  50. Nakatani M, Kaneshima S, Fukao Y (2000) Size-dependent microearthquake initiation inferred from high-gain and low-noise observations at Nikko district, Japan. J Geophys Res 105(B12):28095–28110; doi:10.1029/2000JB900255

    Article  Google Scholar 

  51. Ohmi S, Watanabe K, Shibutani T, Hirano N, Nakao S (2002) The 2000 Western Tottori Earthquake—Seismic activity revealed by the regional seismic networks. Earth Planet Space 54:819–830

    Google Scholar 

  52. Ohnaka M, Kuwahara Y, Yamamoto K, Hirasawa T (1986) Dynamic breakdown processes and the generating mechanism for high-frequency elastic radiation during stick-slip instabilities. In: Das S, Boatwright J, Scholz CH, AGU (eds) Earthquake source mechanics. Geophysical Monograph, vol 37. Maurice Ewing Series, vol 6. American Geophysical Union, Washington DC, pp 13–24

    Google Scholar 

  53. Ohnaka M, Kuwahara Y (1990) Characteristic features of local breakdown near a crack-tip in the transition zone from nucleation to unstable rupture during stick-slip shear failure. Tectonophysics 175:197–220

    Article  Google Scholar 

  54. Ohnaka M, Shen L (1999) Scaling of the shear rupture process from nucleation to dynamic propagation: Implications of geometric irregularity of the rupture surfaces. J Geophys Res 104:817–844

    Article  Google Scholar 

  55. Ohnaka M (2000) A physical scaling relation between the size of an earthquake and its nucleation zone size. Pure Appl Geophys 157:2259–2282

    Article  Google Scholar 

  56. Okubo PG, Dieterich JH (1984) Effects of physical fault properties on frictional instabilities produced on a simulated faults. J Geophys Res 89:5817–5827

    Article  Google Scholar 

  57. Olson EL, Allen RM (2006) Is earthquake rupture deterministic? Nature 442:E5–E6; doi:10.1038/nature04963

    Article  CAS  Google Scholar 

  58. Rydelek P, Horiuchi S (2006) Is earthquake rupture deterministic? (Reply). Nature 442:E6; doi:10.1038/nature04964

    Article  CAS  Google Scholar 

  59. Sato T (1994) Seismic radiation from circular cracks growing at variable rupture velocity. Bull Seismol Soc Am 84:1199–1215

    Google Scholar 

  60. Sato T, Hirasawa T (1973) Body wave spectra from propagating shear cracks. J Phys Earth 21:415–431

    Google Scholar 

  61. Sato T, Kanamori H (1999) Beginning of earthquakes modeled with the Griffith's fracture criterion. Bull Seismol Soc Am 89:80–93

    Google Scholar 

  62. Sato K, Mori J (2006) Scaling relationship of initiations for moderate to large earthquakes. J Geophys Res 111:B05306; doi:10.1029/2005JB003613

    Article  Google Scholar 

  63. Sato K, Mori J (2006) Relation between rupture complexity and earthquake size for two shallow earthquake sequences in Japan. J Geophys Res 10.1029/2005JB003613

  64. Shibazaki B, Matsu'ura M (1992) Spontaneous processes for nucleation, dynamic propagation, and stop of earthquake rupture. Geophys Res Lett 19:1189–1192

    Article  Google Scholar 

  65. Shibazaki B, Matsu'ura M (1995) Foreshocks and pre-events associated with the nucleation of large earthquakes. Geophys Res Lett 22(10):1305–1308; doi:10.1029/95GL01196

    Article  Google Scholar 

  66. Shibazaki B, Matsu'ura M (1998) Transition process from nucleation to high-speed rupture propagation: Scaling from stick-slip experiments to natural earthquakes. Geophys J Int 132:14–30

    Article  Google Scholar 

  67. Shibazaki B, Yoshida Y, Nakamura M, Nakamura M, Katao H (2002) Rupture nucleations in the 1995 Hyogo-ken Nanbu earthquake and its large aftershocks. Geophys J Int 149:572–588

    Article  Google Scholar 

  68. Spudich P, Cranswick E (1984) Direct observation of rupture propagation during the 1979 Imperial Valley earthquake using a short-baseline accelerometer array. Bull Seismol Soc Am 74:2083–2114

    Google Scholar 

  69. Takenaka H, Nakamura T, Yamamoto Y, Toyokuni G, Kawase H (2006) Precise location of the fault plane and the onset of the main rupture of the 2005 West Off Fukuoka Prefecture earthquake. Earth Planets Space 58:75–80

    Google Scholar 

  70. Uchide T, Ide S (2007) Development of multiscale slip inversion method and its application to the 2004 Mid-Niigata Prefecture earthquake. J Geophys Res doi:10.1029/2006JB004528

  71. Uehira K, Yamada T, Shinohara M, Nakahigashi K, Miyamachi H, Iio Y, Okada T, Takahashi H, Matsuwo N, Uchida K, Kanazawa T, Shimizu H (2006) Precise aftershock distribution of the 2005 West Off Fukuoka Prefecture Earthquake (\({Mj=7.0}\)) using a dense onshore and offshore seismic network. Earth Planet Space 58:1605–1610

    Google Scholar 

  72. Umeda Y (1990) High-amplitude seismic waves radiated from the bright spot of an earthquake. Tectonophysics 175:81–92

    Article  Google Scholar 

  73. Umeda Y (1992) The bright spot of an earthquake. Tectonophysics 211:13–22

    Article  Google Scholar 

  74. Umeda Y, Yamashita T, Tada T, Kame N (1996) Possible mechanisms of dynamic nucleation and arresting of shallow earthquake faulting. Tectonophysics 261:179–192

    Article  Google Scholar 

  75. Yamaguchi S, H Kawakata, T Adachi, Y Umeda (2007) Features of initial process of rupture for the 2005 West off Fukuoka Prefecture Eathquake. Zisin Ser 2:241–252 (in Japanese)

    Google Scholar 

  76. Venkataraman A, Beroza GC, Ide S, Imanishi K, Ito H, Iio Y (2006) Measurements of spectral similarity for microearthquakes in western Nagano, Japan. J Geophys Res 111:B03303; doi:10.1029/2005JB003834

    Article  Google Scholar 

  77. Wu Y, Kanamori H, Allen R, Hauksson E (2007) Determination of earthquake early warning parameters, τ c and P d , for southern California. Geophys J Int (OnlineEarly Articles) doi:10.1111/j.1365-246X.2007.03430.x

  78. Wyss M, Brune J (1967) The Alaska earthquake of 28 March 1964—a complex multiple rupture. Bull Seismol Soc Am 57:1017–1023

    Google Scholar 

Download references

Acknowledgments

The project in the Western Nagano Prefecture is a co‐operative study with Shigeki Horiuchi, Shiro Ohmi, Hisao Ito, Yasuto Kuwahara, Eiji Yamamoto, Kentaro Omura, Koichi Miura, Bun'ichiro Shibazaki, and Haruo Sato. We thank James Mori and Masumi Yamada for their critical reviews of the manuscript. This work is partly supported by JSPS.KAKENHI (19204043), Japan. We are grateful for two anonymous reviewers for their critical and thoughtful comments.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag

About this entry

Cite this entry

Iio, Y. (2011). Earthquake Nucleation Process . In: Meyers, R. (eds) Extreme Environmental Events. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-7695-6_20

Download citation

Publish with us

Policies and ethics