Skip to main content

Brittle Tectonics: A Non-linear Dynamical System

  • Reference work entry
Extreme Environmental Events
  • 1413 Accesses

Article Outline

Glossary

Definition of the Subject

Introduction

Scaling Relations: Self‐similarity

Earthquake and Fault Populations: Self-organization

Models of the System

Future Directions

Bibliography

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 599.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

Ductile shear zone:

A quasi‐planar tabular zone of localized shear deformation in the semi‐brittle to fully plastic regimes.

Earthquake:

Dynamically running shear instability on a fault.

Fault:

A shear crack with friction between its interfaces.

Mylonite:

A metamorphic rock with a fabric produced by shear deformation.

Suprafault:

The shear relaxation structure that includes a fault and its associated ductile shear zone.

Bibliography

Primary Literature

  1. Ackermann RV, Schlische RW, Withjack MO (2001) The geometric and statistical evolution of normal fault systems: an experimental study of the effects of mechanical layer thickness on scaling laws. J Struct Geol 23:1803–1819

    Article  Google Scholar 

  2. Bak P, Tang C (1989) Earthquakes as a self‐organized critical phenomenon. J Geophys Res 94:15635–15637

    Article  Google Scholar 

  3. Bak P, Tang C, Weisenfeld K (1987) Self‐organized criticality: An explanation of \({1/f}\) noise. Phys Rev Lett 59:381–384

    Article  Google Scholar 

  4. Beeler NM, Hickman SH, Wong TF (2001) Earthquake stress drop and laboratory‐inferred interseismic strength recovery. J Geophys Res‐Solid Earth 106:30701–30713

    Article  Google Scholar 

  5. Brown SR, Scholz CH, Rundle JB (1991) A simplified spring‐block model of earthquakes. Geophys Res Lett 18:215–218

    Article  Google Scholar 

  6. Burridge R, Knopoff L (1967) Model and theoretical seismicity. Bull Seism Soc Am 57:341–362

    Google Scholar 

  7. Carlson JM, Langer JS (1989) Properties of earthquakes generated by fault dynamics. Phys Rev Lett 62:2632–2635

    Article  Google Scholar 

  8. Christensen K, Olami Z (1992) Variation of the Gutenberg–Richter B Values and Nontrivial Temporal Correlations in a Spring-Block Model for Earthquakes. J Geophys Res‐Solid Earth 97:8729–8735

    Article  Google Scholar 

  9. Cowie PA, Scholz CH, Edwards M, Malinverno A (1993) Fault strain and seismic coupling on midocean ridges. J Geophys Res-Solid Earth 98:17911–17920

    Article  Google Scholar 

  10. Cowie PA, Sornette D, Vanneste C (1995) Multifractal scaling properties of a growing fault population. Geophys J Int 122:457–469

    Article  Google Scholar 

  11. Davison F, Scholz C (1985) Frequency‐moment distribution of earthquakes in the Aleutian Arc: A test of the characteristic earthquake model. Bull Seismol Soc Am 75:1349–1362

    Google Scholar 

  12. Davy P, Sornette A, Sornette D (1990) Some consequences of a proposed fractal nature of continental faulting. Nature 348:56–58

    Article  Google Scholar 

  13. Dawers NH, Anders MH, Scholz CH (1993) Growth of normal faults – displacement‐length scaling. Geology 21:1107–1110

    Article  Google Scholar 

  14. Gupta A, Scholz CH (2000) Brittle strain regime transition in the Afar depression: implications for fault growth and seafloor spreading. Geology 28:1087–1090

    Article  Google Scholar 

  15. Hanks TC (1977) Earthquake Stress Drops, Ambient Tectonic Stresses and Stresses That Drive Plate Motions. Pure Appl Geophys 115:441–458

    Article  Google Scholar 

  16. Jensen HJ (1998) Self‐organized criticality: Emergent complex behavior in physical and biological systems. Cambridge Univ. Press, Cambridge

    Google Scholar 

  17. Olami Z, Feder HJS, Christensen K (1992) Self‐organized criticality in a continuous, nonconservative cellular automaton modeling earthquakes. Phys Rev Lett 68:1244–1247

    Article  Google Scholar 

  18. Pacheco JF, Sykes LR (1992) Seismic moment catalog of large shallow earthquakes, 1900 to 1989. Bull Seismol Soc Am 82:1306–1349

    Google Scholar 

  19. Pacheco JF, Scholz CH, Sykes LR (1992) Changes in frequency‐size relationship from small to large earthquakes. Nature 355:71–73

    Article  Google Scholar 

  20. Schlische RW, Young SS, Ackermann RV, Gupta A (1996) Geometry and scaling relations of a population of very small rift‐related normal faults. Geology 24:683–686

    Article  Google Scholar 

  21. Scholz CH (1968) The frequency‐magnitude relation of microfracturing in rock and its relation to earthquakes. Bull Seismol Soc Am 58:399–415

    Google Scholar 

  22. Scholz CH (1994) A reappraisal of large earthquake scaling. Bull Seismol Soc Am 84:215–218

    Google Scholar 

  23. Scholz CH (1997) Earthquake and fault populations and the calculation of brittle strain. Geowissenschaften 3–4:124–130

    Google Scholar 

  24. Scholz CH (1997) Size distributions for large and small earthquakes. Bull Seismol Soc Am 87:1074–1077

    Google Scholar 

  25. Scholz CH (1998) Earthquakes and friction laws. Nature 391:37–42

    Article  CAS  Google Scholar 

  26. Scholz CH (1998) A further note on earthquake size distributions. Bull Seismol Soc Am 88:1325–1326

    Google Scholar 

  27. Scholz CH (2002) The mechanics of earthquakes and faulting, 2nd edn. Cambridge University Press, Cambridge

    Google Scholar 

  28. Scholz CH, Lawler TM (2004) Slip tapers at the tips of faults and earthquake ruptures. Geophys Res Lett 31:L21609, doi:10.1029/2004GL021030

  29. Scholz CH, Dawers NH, Yu JZ, Anders MH (1993) Fault growth and fault scaling laws – preliminary‐results. J Geophys Res-Solid Earth 98:21951–21961

    Article  Google Scholar 

  30. Shaw BE, Scholz CH (2001) Slip‐length scaling in large earthquakes: observations and theory and implications for earthquake physics. Geophys Res Lett 28:2995–2998

    Article  Google Scholar 

  31. Shaw BE, Wesnouski SG (2008) Slip‐length Scaling in large earthquakes: The role of deep penetrating slip below the seismogenic layer. Bull Seismol Soc Am 98:1633–1641

    Article  Google Scholar 

  32. Sornette D, Virieux J (1992) Linking short‐timescale deformation to long‐timescale tectonics. Nature 357:401–403

    Article  Google Scholar 

  33. Spyropoulos C, Griffith WJ, Scholz CH, Shaw BE (1999) Experimental evidence for different strain regimes of crack populations in a clay model. Geophys Res Lett 26:1081–1084

    Article  Google Scholar 

  34. Spyropoulos C, Scholz CH, Shaw BE (2002) Transition regimes for growing crack populations. Phys Rev E 65:056105, doi:10.1103/PhysRevE.65.056105

    Article  Google Scholar 

  35. Stein RS (1999) The role of stress transfer in earthquake occurrence. Nature 402:605–609

    Article  CAS  Google Scholar 

  36. Townend J, Zoback MD (2000) How faulting keeps the crust strong. Geology 28:399–402

    Article  Google Scholar 

  37. Tse S, Rice J (1986) Crustal earthquake instability in relation to the depth variation of frictional slip properties. J Geophys Res 91:9452–9472

    Article  Google Scholar 

  38. Turcotte DL (1999) Seismicity and self‐organized criticality. Phys Earth Planet Inter 111:275–293

    Article  Google Scholar 

Books and Reviews

  1. Sornette D (2003) Critical phenomena in natural systems: Chaos, fractals, self‐organization, and disorder. Springer, Berlin

    Google Scholar 

  2. Turcotte DL (1997) Fractals and chaos in geology and geophyics. Cambridge, New York

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag

About this entry

Cite this entry

Scholz, C.H. (2011). Brittle Tectonics: A Non-linear Dynamical System. In: Meyers, R. (eds) Extreme Environmental Events. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-7695-6_2

Download citation

Publish with us

Policies and ethics