Digital Image Acquisition: Preprocessing and Data Reduction

  • Siamak Khorram
  • Stacy A. C. Nelson
  • Halil Cakir
  • Cynthia F. van der Wiele
Reference work entry


The main objective of this chapter is to focus on the digital preprocessing and data reduction techniques as applied to remotely sensed data for the purpose of extracting useful Earth resources information. The image processing and post-processing tools are described in the next chapter. The concepts discussed in this chapter include:
  • Image acquisition considerations including currently available remotely sensed data

  • Image characteristics in terms of spatial, spectral, radiometric, and temporal resolutions

  • Preprocessing techniques such as geometric distortion removals, atmospheric correction algorithms, image registration, enhancement, masking, and data transformations

  • Data reduction, fusion, and integration techniques

  • International policies governing acquisition and distribution of remotely sensed data


Data fusion Digital image processing Digital integration Electromagnetic spectrum Hyperspectral imaging Light detection and ranging (LiDAR) Multispectral imaging Pixel Preprocessing Radio detection and ranging (RADAR) Radiometric resolution Satellite remote sensing Spatial resolution Spectral resolution Temporal resolution 


  1. T.E. Avery, G.L.L. Berlin, Fundamentals of Remote Sensing and Air Photo Interpretation, 5th edn. (Prentice Hall, New York, 1992), 472 pGoogle Scholar
  2. E.J. Beh, Simple correspondence analysis: a bibliographic review. Int. Stat. Rev. 72(2), 257–284 (2004)MathSciNetMATHCrossRefGoogle Scholar
  3. J.P. Benzécri, Correspondence Analysis Handbook (Marcel Dekker, New York, 1992)MATHGoogle Scholar
  4. H.I. Cakir, S. Khorram, S.A. Nelson, Correspondence analysis for detecting land cover change. Remote Sens. Environ. 102, 306–317 (2006)CrossRefGoogle Scholar
  5. H.I. Cakir, S. Khorram, X.L. Dai, P. de Fraipont, Merging SPOT XS and SAR imagery using the wavelet transform method to improve classification accuracy, in Geoscience and Remote Sensing Symposium, IGARSS’99 Proceedings, IEEE International, vol 1 (1999), pp. 71–73Google Scholar
  6. J.R. Carr, K. Matanawi, Correspondence analysis for principal components transformation of multispectral and hyperspectral digital images. Photogramm. Eng. Remote Sens. 65(8), 909–914 (1999)Google Scholar
  7. X. Dai, S. Khorram, Quantification of the impact of misregistration on digital change detection accuracy, in Proceedings of IEEE/IGARSS’97 International Geoscience and Remote Sensing Symposium, Singapore, 1997Google Scholar
  8. X. Dai, S. Khorram, Data fusion using artificial neural networks: a case study on multi-temporal change analysis. Comput. Environ. Urban Syst. 23, 19–31 (1999)CrossRefGoogle Scholar
  9. B. de Montluc, The new international political and strategic context for space policies. Space Policy 25, 20–28 (2009)CrossRefGoogle Scholar
  10. J.P. Djamdji, A. Bijaoui, R. Manieri, Geometrical registration of images: the multiresolution approach. Photogramm. Eng. Remote Sens. 59, 645–653 (1993)Google Scholar
  11. J.R. Dobson, E.A. Bright, R.L. Ferguson, D.W. Field, L.L. Wood, K.D. Haddad, H. Iredale, J.R. Jensen, V. Klemas, R.J. Orth, J.P. Thomas, NOAA Coastal Change Analysis Program (C-CAP): Guidance for Regional Implementation (National Oceanic &Atmospheric Administration, NMFS, Washington, DC, 1995), 92 pGoogle Scholar
  12. B.C. Forster, Derivation of atmospheric correction procedures for Landsat MSS with particular reference to urban data. Int. J. Remote Sens. 5, 799–817 (1984)CrossRefGoogle Scholar
  13. J.I. Gabrynowicz, The promise and problems of the Land Remote Sensing Policy Act of 1992. Space Policy 9, 319–328 (1993).CrossRefGoogle Scholar
  14. H.G. Gauch, Jr., Multivariate analysis in community structure (Cambridge University Press, Cambridge, 1982)Google Scholar
  15. M.J. Greenacre, Theory and Application of Correspondence Analysis (Academic, London, 1984)Google Scholar
  16. A. Grossmann, J. Morlet, Decomposition of Hardy functions into square integrable wavelets of constant shape. SIAM J. Math. Anal. 15, 723–736 (1984)MathSciNetMATHCrossRefGoogle Scholar
  17. R. Harris, Current policy issues in remote sensing: report by the International Policy Advisory Committee of ISPRS. Space Policy 19, 293–296 (2003)CrossRefGoogle Scholar
  18. M. Herold, S. Guenther, K.C. Clarke, Mapping urban areas in the Santa Barbara south coast using IKONOS and eCognition. eCognition Appl. Note. Munchen: Definiens ImgbH 4(1), 20 p (2003)Google Scholar
  19. G. Horgan, Wavelets for SAR image smoothing. Photogramm. Eng. Remote Sens. 64(12), 1171–1177 (1998)Google Scholar
  20. B. Jähne, Digital Image Processing (Springer, New York, 1991), pp. 219–230Google Scholar
  21. R. Jakhu, International law governing the acquisition and dissemination of satellite imagery, in Commercial Satellite Imagery and United Nations Peacekeeping: A View from Above (Ashgate, Burlington, 2004), 259 pGoogle Scholar
  22. J.R. Jensen, Introductory Digital Image Processing, 3rd edn. (Pearson Prentice Hall, Upper Saddle River, 2005), 316 pGoogle Scholar
  23. J.F. Keeley, R.N. Huebert, Commercial Satellite Imagery and United Nations Peacekeeping: A View from Above (Ashgate, Burlington, 2004)Google Scholar
  24. S. Khorram, Coastwatch – water quality mapping of the entire San Francisco Bay and delta from Landsat multispectral scanner data, in Space Sciences Laboratory, ed. by : R.N. Colwell, PI, Series 23, Issue 6. (University of California, Berkeley, 1982), 34 pGoogle Scholar
  25. P. Legendre, L. Legendre, Numerical Ecology: Second English Edition (Elsevier Science, Amsterdam, 1998), 823 pGoogle Scholar
  26. T. Lillesand, R. Kiefer, J. Chipman, Remote Sensing and Image Interpretation, 6th edn. (Wiley, New York, 2008), 763 pGoogle Scholar
  27. R.S. Lunetta, C. Elvidge, Remote Sensing Change Detection: Environmental Monitoring Methods and Applications (Taylor & Francis, New York, 2000), 340 pGoogle Scholar
  28. M.K. Macauley, Is the vision of the earth observation summit realizable? Space Policy 21, 29–39 (2005)CrossRefGoogle Scholar
  29. S.A. Nelson, P.A. Soranno, J. Qi, Land cover change in the upper Barataria Basin estuary, Louisiana, from 1972–1992: increases in wetland area. Environ. Manag. 29(5), 716–727 (2002)CrossRefGoogle Scholar
  30. J. Núňez, X. Otazu, O. Fors, A. Prades, V. Palà, R. Arbiol, Multiresolution-based image fusion with additive wavelet decomposition. IEEE Trans. Geosci. Remote Sens. 37(3), 1204–1211 (1999)CrossRefGoogle Scholar
  31. K. Pearson, On lines and planes of closest fit to systems of points in space. Philosophical Magazine 2, 559–579 (1901)CrossRefGoogle Scholar
  32. C. Pohl, V. Genderen, Multisensor image fusion in remote sensing: concepts, methods and applications. Int. J. Remote Sens. 19(5), 823–854 (1998)CrossRefGoogle Scholar
  33. T. Ranchin, L. Wald, The wavelet transform for the analysis of remotely sensed images. Int. J. Remote Sens. 14, 615–619 (1993)CrossRefGoogle Scholar
  34. T. Ranchin, L. Wald, Fusion of high spatial and spectral resolution images: the ARSIS concept and its implementation. Photogramm. Eng. Remote Sens. 66(1), 49–61 (2000)Google Scholar
  35. M. Rao, K.R.S. Murthi, Keeping up with remote sensing and GI advances – policy and legal perspectives. Space Policy 22, 262–273 (2006)CrossRefGoogle Scholar
  36. J.C. Russ, The Image Processing Handbook (Boca Raton, CRC Press, 2002), 744 pGoogle Scholar
  37. A. Singh, A. Harrison, Standardized principal components. Int. J. Remote Sens. 6, 883–896 (1985)CrossRefGoogle Scholar
  38. V.K. Singh, Discrete wavelet transform based image compression. Int. J. Remote Sens. 20, 3399–3405 (1999)CrossRefGoogle Scholar
  39. N.M. Short, The remote sensing tutorial. Published by NASA via Internet, (2003),
  40. P.H. Swain, S.M. Davis, Remotde Sensing: The Quantitative Approach (McGraw-Hill, New York, 1978), pp. 166–174Google Scholar
  41. J.R.G. Townshend, C.O. Justice, C. Gurney, J. McManus, The impact of misregistration on change detection. IEEE Trans. Geosci. Remote Sens. 30, 1054–1060 (1992)CrossRefGoogle Scholar
  42. R.E. Turner, M.M. Spencer, Atmospheric model for correction of spacecraft Data, in Proceedings of the Eighth International Symposium on Remote Sensing of the Environment, Ann Arbor, vol. 11 (1972), pp. 895–893Google Scholar
  43. United Nations Resolution 41/65. Principles relating to remote sensing of the Earth from outer space. Adopted without a vote (1986),
  44. M. Williams, Legal aspects of the privatization and commercialization of space activities, remote sensing, and national space legislation. Second report. (International Law Association, Toronto, 2006), p. 2Google Scholar
  45. D.A. Yocky, Multiresolution wavelet decomposition image merger of Landsat thematic mapper and SPOT panchromatic data. Photogramm. Eng. Remote Sens. 62(9), 1067–1074 (1996)Google Scholar
  46. H. Yuan, C.F. Van Der Wiele, S. Khorram, An automated artificial neural network system for land use/land cover classification from Landsat TM imagery. J. Remote Sens., Open Source, Switzerland, ISS 2072-4292, 20 p (2009)Google Scholar
  47. J. Zhou, D.L. Civco, J.A. Silander, A wavelet transform method to merge Landsat TM and SPOT panchromatic data. Int. J. Remote Sens. 19(4), 743–757 (1998)CrossRefGoogle Scholar
  48. C. Zhu, X. Yang, Study of remote sensing image texture analysis and classification using wavelet. Int. J. Remote Sens. 19(16), 3197–3203 (1998)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Siamak Khorram
    • 1
    • 2
  • Stacy A. C. Nelson
    • 3
  • Halil Cakir
    • 4
  • Cynthia F. van der Wiele
    • 5
  1. 1.Department of Environmental Science, Policy, and ManagementUniversity of CaliforniaBerkeleyUSA
  2. 2.North Carolina State UniversityRaleighUSA
  3. 3.Center for Earth ObservationNorth Carolina State University Campus Box 7106; 5123 Jordan HallRaleighUSA
  4. 4.Air Quality Analysis Group/AQAD/OAQPSUS Environmental Protection AgencyResearch Triangle ParkUSA
  5. 5.Cynthia Van Der Wiele and Associates, LLCDurhamUSA

Personalised recommendations