Skip to main content

Boron-Doped Diamond for Green Electro-Organic Synthesis

  • Reference work entry
  • First Online:
Encyclopedia of Applied Electrochemistry

Introduction

Since only electrons serve as reagents in electrochemical transformations, almost no reagent waste is produced. The outstanding atom economy is often combined with pronounced energy efficiency, and consequently, such electrochemical processes are considered as green chemistry [1]. Therefore, electrosynthesis is of outstanding technical significance, and novel electrosynthetic transformations will be the basis for technical innovations and future applications. Boron-doped diamond (BDD) electrodes provide an exceptionally wide electrochemical window in protic media [2]. The offset potentials for the evolution of molecular hydrogen and oxygen are extraordinarily large [3, 4]. Currently, the anodic regime is almost exclusively exploited for electro-organic synthesis, which will be surveyed within this entry.

BDD anodes allow the formation of OH radicals at potentials well below the onset of oxygen evolution. Such anodic systems can be used for new oxidation reactions which are...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 999.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Steckhan E, Arns T, Heineman WR et al (2001) Environmental protection and economization of resources by electroorganic and electroenzymatic syntheses. Chemosphere 43(1):63–73

    CAS  Google Scholar 

  2. Waldvogel SR, Mentizi S, Kirste A (2012) Boron-doped diamond electrodes for electroorganic chemistry. Top Curr Chem 320:1–31

    CAS  Google Scholar 

  3. Brillas E, Martínez-Huitle CA (eds) (2011) Synthetic diamond films – preparation, electrochemistry, characterization and applications. Wiley-VCH, Hoboken, New Jersey

    Google Scholar 

  4. Francke R, Cericola D, Kötz R et al (2012) Novel electrolytes for electrochemical double layer capacitors based on 1,1,1,3,3,3-hexafluoropropan-2-ol. Electrochim Acta 62:372–380

    CAS  Google Scholar 

  5. Iniesta J, Michaud PA, Panizza M et al (2001) Electrochemical oxidation of 3-methylpyridine at a boron-doped diamond electrode: application to electroorganic synthesis and wastewater treatment. Electrochem Commun 3(7):346–351

    CAS  Google Scholar 

  6. Zollinger D, Griesbach U, Pütter H et al (2004) Methoxylation of p-tert-butyltoluene on boron-doped diamond electrodes. Electrochem Commun 6(6):600–604

    CAS  Google Scholar 

  7. Marselli B, Garcia-Gomez J, Michaud PA et al (2003) Electrogeneration of hydroxyl radicals on boron-doped diamond electrodes. J Electrochem Soc 150(3):D79–D83

    CAS  Google Scholar 

  8. Rodrigo MA, Michaud PA, Duo I et al (2001) Oxidation of 4-chlorophenol at boron-doped diamond electrode for wastewater treatment. J Electrochem Soc 148(5):D60–D64

    CAS  Google Scholar 

  9. Panizza M, Michaud PA, Cerisola G et al (2001) Anodic oxidation of 2-naphthol at boron-doped diamond electrodes. J Electroanaly Chem 507(1–2, Sp. Iss. SI):206–214

    CAS  Google Scholar 

  10. Waldvogel S, Elsler B (2012) Electrochemical synthesis on boron-doped diamond. Electrochim Acta. doi:10.1016/j.electacta.2012.03.173 (in press)

    Google Scholar 

  11. Waldvogel SR, Mentizi S, Kirste A (2011) Use of diamond films in organic electrosynthesis. In: Brillas E, Martínez-Huitle CA (eds) Synthetic diamond films – preparation, electrochemistry, characterization and applications. Wiley-VCH, Hoboken, New Jersey, pp 483–510

    Google Scholar 

  12. Waldvogel SR (2010) Novel anodic concepts for the selective phenol coupling reaction. Pure Appl Chem 82(4):1055–1063

    CAS  Google Scholar 

  13. Malkowsky IM, Rommel CE, Wedeking K et al (2006) Facile and highly diastereoselective formation of a novel pentacyclic scaffold by direct anodic oxidation of 2,4-dimethylphenol. Eur J Org Chem (1):241–245

    Google Scholar 

  14. Barjau J, Koenigs P, Kataeva O et al (2008) Reinvestigation of highly diastereoselective pentacyclic spirolactone formation by direct anodic oxidation of 2,4-dimethylphenol. Synlett 15:2309–2312

    Google Scholar 

  15. Barjau J, Schnakenburg G, Waldvogel SR (2011) Diversity-oriented synthesis of polycyclic scaffolds by modification of an anodic product derived from 2,4-dimethylphenol. Angew Chem Int Ed 50(6):1415–1419

    CAS  Google Scholar 

  16. Barjau J, Fleischhauer J, Schnakenburg G et al (2011) Installation of amine moieties into a polycyclic anodic product derived from 2,4-dimethylphenol. Chem Eur J 17(52):14785–14791

    CAS  Google Scholar 

  17. Malkowsky IM, Rommel CE, Fröhlich R et al (2006) Novel template-directed anodic phenol-coupling reaction. Chem Eur J 12(28):7482–7488

    CAS  Google Scholar 

  18. Malkowsky IM, Fröhlich R, Griesbach U et al (2006) Facile and reliable synthesis of tetraphenoxyborates and their properties. Eur J Inorg Chem (8):1690–1697

    Google Scholar 

  19. Griesbach U, Pütter H, Waldvogel SR, Malkowsky I (2006) Anodic electrolytic oxidative electrodimerisation of hydroxy-substituted aromatics to give dihydroxy-substituted biarylene compounds (WO 2006077204 A2), BASF AG, Ludwigshafen (Germany)

    Google Scholar 

  20. Malkowsky IM, Griesbach U, Pütter H et al (2006) Unexpected highly chemselective anodic ortho-coupling reaction of 2,4-dimethylphenol on boron-doped diamond electrodes. Eur J Org Chem (20):4569–4572

    Google Scholar 

  21. Kirste A, Nieger M, Malkowsky IM et al (2009) Ortho-selective phenol-coupling reaction by anodic treatment on boron-doped diamond electrode using fluorinated alcohols. Chem Eur J 15(10):2273–2277

    CAS  Google Scholar 

  22. Degner D (1988) Organic electrosynthesis in industry. Top Curr Chem 148:1–9523

    CAS  Google Scholar 

  23. Pütter H (2001) In: Lund H, Hammerich O (eds) Organic electrochemistry, 4th edn. Marcel Dekker, New York, p 1259

    Google Scholar 

  24. Pütter H, Weiper-Idelmann A, Merk C, Fryda M, Klages C, Hampel A (2000) Diamantbeschichtete Elektroden (EP 1 036 861 B1), BASF AG, Ludwigshafen (Germany)

    Google Scholar 

  25. Zollinger D, Griesbach U, Pütter H et al (2004) Electrochemical cleavage of 1,2-diphenylethanes at boron-doped diamond electrodes. Electrochem Commun 6(6):605–608

    CAS  Google Scholar 

  26. Reufer C, Möbus K, Lehmann T, Weckbecker C (2004) Method fot the anodic alkoxylation of organic compounds (WO 2004 087999 A2), DEGUSSA AG, Hanau (Germany)

    Google Scholar 

  27. Reufer C, Lehmann T, Sanzenbacher R, Weckbecker C (2004) Method for the anodic alkoxylation of organic substrates (WO 2004 085710 A2), DEGUSSA AG, Hanau (Germany)

    Google Scholar 

  28. Fardel R, Griesbach U, Pütter H et al (2006) Electrosynthesis of trimethylorthoformate on BDD electrodes. J Appl Electrochem 36(2):249–253

    CAS  Google Scholar 

  29. Yoshida J, Kataoka K, Horcajada R et al (2008) Modern strategies in electroorganic synthesis. Chem Rev 108(7):2265–2299

    CAS  Google Scholar 

  30. Lehmann T, Schneider R, Weckbecker C, Dunach E, Olivero S (WO 02/16671 A1)

    Google Scholar 

  31. Lehmann T, Schneider R, Reufer C et al (2001) GDCh-Monographie, Frankfurt (23):251–258

    CAS  Google Scholar 

  32. Bilz J, Hateley M, Lehmann T, Reufer C, Sanzenbacher R, Weckbecker C (2006) (EP 1 63 1702), DEGUSSA AG, Hanau (Germany)

    Google Scholar 

  33. Lehmann T, Dunach E (2009) personal communication

    Google Scholar 

  34. Kirste A, Hayashi S, Schnakenburg G et al (2011) Highly selective electrosynthesis of biphenols on graphite electrodes in fluorinated media. Chem Eur J 17(50):14164–14169

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Siegfried R. Waldvogel .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this entry

Cite this entry

Waldvogel, S.R., Elsler, B. (2014). Boron-Doped Diamond for Green Electro-Organic Synthesis. In: Kreysa, G., Ota, Ki., Savinell, R.F. (eds) Encyclopedia of Applied Electrochemistry. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-6996-5_90

Download citation

Publish with us

Policies and ethics