Skip to main content

Mercury Drop Electrodes

  • Reference work entry
  • First Online:
Encyclopedia of Applied Electrochemistry

Introduction and Description

Mercury has been widely used in electrochemistry, especially as a working electrode due to its unique electrochemical properties. The employment of a mercury electrode as the working electrode is called polarography, which was invented by Professor Jaroslav Heyrovský in 1922 [1]. Prof. Heyrovský was awarded Nobel Prize in 1959 for the significance polarography has established in electrochemical analysis. In this entry, we will introduce different types of mercury drop electrodes, the associated techniques for utilizing mercury electrodes, and the applications of mercury electrodes for the determination of various species.

Mercury electrodes are beneficial for the measurement of both inorganic and organic materials. The species to be determined on the mercury electrode should demonstrate electroactivity within the available potential range, or catalytic activity, or the ability to be adsorbed on mercury. The electroactive species must be soluble in a...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 999.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Heyrovsky M (2011) Polarography-past, present, and future. J Solid State Electr 15:1799

    CAS  Google Scholar 

  2. Zuman P (2000) Role of mercury electrodes in contemporary analytical chemistry. Electroanalalysis 12:1187

    CAS  Google Scholar 

  3. Wang J (2006) Analytical electrochemistry. Wiley, New Jersey, p 250

    Google Scholar 

  4. Vyskocil V, Barek J (2009) Mercury electrodes-possibilities and limitations in environmental electroanalysis. Crit Rev Anal Chem 39:173

    CAS  Google Scholar 

  5. Barek J, Fogg AG, Muck A, Zima J (2001) Polarography and voltammetry at mercury electrodes. Crit Rev Anal Chem 31:291

    CAS  Google Scholar 

  6. Cavicchioli A, La-Scalea MA, Gutz IGR (2004) Analysis and speciation of traces of arsenic in environmental food and industrial samples by voltammetry: a review. Electroanalysis 16:697

    CAS  Google Scholar 

  7. Hung DQ, Nekrassova O, Compton RG (2004) Analytical methods for inorganic arsenic in water: a review. Talanta 64:269

    CAS  Google Scholar 

  8. Dubey RK, Puri BK, Hussain MF (1997) Determination of arsenic in various environmental and oil samples by differential pulse polarography after adsorption of its morpholine-4-carbodithioate on to microcrystalline naphthalene or morpholine-4-dithio-carbamate-CTMAB-naphthalene adsorbent. Anal Lett 30:163

    CAS  Google Scholar 

  9. Higham AM, Tomkins RPT (1993) Determination of trace quantities of selenium and arsenic in canned tuna fish by using electroanalytical techniques. Food Chem 48:85

    CAS  Google Scholar 

  10. Greschonig H, Irgolic KJ (1992) Electrochemical methods for the determination of total arsenic and arsenic compounds. Appl Organomet Chem 6:565

    CAS  Google Scholar 

  11. Henze G, Wagner W, Sander S (1997) Speciation of arsenic(V) and arsenic(III) by cathodic stripping voltammetry in fresh water samples. Fresen J Anal Chem 358:741

    CAS  Google Scholar 

  12. Li H, Smart RB (1996) Determination of sub-nanomolar concentration of arsenic(III) in natural waters by square wave cathodic stripping voltammetry. Anal Chim Acta 325:25

    CAS  Google Scholar 

  13. Grabarczyk M (2008) A catalytic adsorptive stripping voltammetric procedure for trace determination of Cr(VI) in natural samples containing high concentrations of humic substances. Anal Bioanal Chem 390:979

    CAS  Google Scholar 

  14. Whitworth DJ, Achterberg EP, Nimmo M, Worsfold PJ (1998) Validation and in situ application of an automated dissolved nickel monitor for estuarine studies. Anal Chim Acta 377:217

    CAS  Google Scholar 

  15. de Carvalho LM, Schwedt G, Henze G, Sander S (1999) Redoxspeciation of selenium in water samples by cathodic stripping voltammetry using an automated flow system. Analyst 124:1803

    Google Scholar 

  16. dos Santos ACV, Masini JC (2006) Development of a sequential injection anodic stripping voltammetry (SI-ASV) method for determination of Cd(II), Pb(II) and Cu(II) in wastewater samples from coatings industry. Anal Bioanal Chem 385:1538

    Google Scholar 

  17. Vega M, van den Berg CMG (1997) Determination of cobalt in seawater by catalytic adsorptive cathodic stripping voltammetry. Anal Chem 69:874

    CAS  Google Scholar 

  18. Wang Y, Liu ZQ, Yao GJ, Zhu PH, Hu XY, Yang C, Xu Q (2009) An electrochemical assay for the determination of Se (IV) in a sequential injection lab-on-valve system. Anal Chim Acta 649:75

    CAS  Google Scholar 

  19. Suteerapataranon S, Jakmunee J, Vaneesorn Y, Grudpan K (2002) Exploiting flow injection and sequential injection anodic stripping voltammetric systems for simultaneous determination of some metals. Talanta 58:1235

    CAS  Google Scholar 

  20. Lukaszewski Z, Jakubowska M, Zembrzuski W, Karbowska B, Pasieczna A (2010) Flow-Injection Differential-pulse anodic stripping voltammetry as a tool for thallium monitoring in the environment. Electroanalysis 22:1963

    CAS  Google Scholar 

  21. Rodrigues PG, Rodrigues JA, Barros AA, Lapa RAS, Lima JLFC, Cruz JMM, Ferreira AA (2002) Automatic flow system with voltammetric detection for diacetyl monitoring during brewing process. J Agr Food Chem 50:3647

    CAS  Google Scholar 

  22. Nouws HPA, Delerue-Matos C, Barros AA, Rodrigues JA, Santos-Silva A (2005) Electroanalytical study of fluvoxamine. Anal Bioanal Chem 382:1662

    CAS  Google Scholar 

  23. Rodrigues LNC, Zanoni MVB, Fogg AG (1999) Indirect polarographic and cathodic stripping voltammetric determination of cefaclor as an alkaline degradation product. J Pharm Biomed 21:497

    CAS  Google Scholar 

  24. Guaratini CCI, Zanoni MVB, Fogg AG (2002) Cathodic stripping voltammetric detection and determination at a hanging mercury-drop electrode of dye contaminants in purified biomaterials: study of the human serum albumin and reactive dye 120 system. Microchem J 71:65

    CAS  Google Scholar 

  25. LaFuente JMG, Martinez EF, Perez JAV, Fernandez SF, Ordieres AJM, Uria JES, Sanchez MLF, Sanz-Medel A (2000) Differential-pulse voltammetric determination of low mu gl(-1) cyanide levels using EDTA, Cu(II) and a hanging mercury drop electrode. Anal Chim Acta 410:135

    Google Scholar 

  26. Zima J, Barek J, Moreira JC, Mejstrik V, Fogg AG (2001) Electrochemical determination of trace amounts of environmentally important dyes. Fresenius J Anal Chem 369:567

    CAS  Google Scholar 

  27. dos Santos LBO, Masini JC (2008) Square wave adsorptive cathodic stripping voltarnmetry automated by sequential injection analysis - Potentialities and limitations exemplified by the determination of methyl parathion in water samples. Anal Chim Acta 606:209

    Google Scholar 

  28. dos Santos LBO, Abate G, Masini JC (2004) Determination of atrazine using square wave voltammetry with the Hanging Mercury Drop Electrode (HMDE). Talanta 62:667

    Google Scholar 

  29. Inam R, Gulerman EZ, Sarigul T (2006) Determination of triflumizole by differential pulse polarography in formulation, soil and natural water samples. Anal Chim Acta 579:117

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ying-Hui Lee .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this entry

Cite this entry

Lee, YH., Hu, CC. (2014). Mercury Drop Electrodes. In: Kreysa, G., Ota, Ki., Savinell, R.F. (eds) Encyclopedia of Applied Electrochemistry. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-6996-5_68

Download citation

Publish with us

Policies and ethics