Encyclopedia of Applied Electrochemistry

2014 Edition
| Editors: Gerhard Kreysa, Ken-ichiro Ota, Robert F. Savinell

Alkaline Membrane Fuel Cells, Membranes

Reference work entry
DOI: https://doi.org/10.1007/978-1-4419-6996-5_524

In this chapter a new type of solid electrolyte membrane for low-temperature fuel cell application, the anion exchange membrane (AEM), is reviewed. The properties, advantages, and challenges of the anion exchange membranes are discussed.

Introduction

Anion exchange membranes (AEMs) are used as solid polymer electrolyte in the alkaline membrane fuel cell (AMFC) technology, also referred to as anion exchange membrane fuel cell (AEMFC). In this relatively novel fuel cell technology, the OH is being transported from the cathode to the anode through the anion exchange membrane. In other words, the membrane acts as an anion-conducting membrane between both electrodes of the fuel cell.

The fuel cell reactions for an alkaline membrane fuel cell are described below:
$$ {\mathrm{ H}}_2+{2\mathrm{ O}\mathrm{ H}}^{-}\Rightarrow {2\mathrm{ H}}_2\mathrm{ O}+{2\mathrm{ e}}^{-}\kern1em \mathrm{ anode} $$
This is a preview of subscription content, log in to check access

References

  1. 1.
    Dekel DR (2012) Latest advances in alkaline membrane fuel cell (AMFC) technology. In: 3rd Carisma international conference, 3 Sept 2012, Copenhagen. http://www.hotmea.kemi.dtu.dk/upload/institutter/ki/hotmea/carisma%202012/abstracts/dekel%20carisma%202012.pdf. Accessed 16 Dec 2012
  2. 2.
    Pivovar BS (2006) Alkaline Membrane Fuel Cell Workshop Final Report. http://www1.eere.energy.gov/hydrogenandfuelcells/pdfs/amfc_dec2006_workshop_report.pdf. Accessed 6 Nov 2012
  3. 3.
    Strathmann H (2004) Ion-exchange membrane separation processes, vol 9, Membrane science and technology series. Elsevier, AmsterdamGoogle Scholar
  4. 4.
    Robertson NJ, Kostalik Iv HA, Clark TJ, Mutolo PF, Abruña HD, Coates GW (2010) Tunable high performance cross-linked alkaline anion exchange membranes for fuel cell applications. J Am Chem Soc 132:3400–3404. doi:10.1021/ja908638dGoogle Scholar
  5. 5.
    Yan J, Hickner MA (2010) Anion exchange membranes by bromination of benzylmethyl containing poly(sulfone)s. Macromolecules 43:2349–2356. doi:10.1021/ma902430yGoogle Scholar
  6. 6.
    Varcoe JR, Slade RCT (2005) Prospects for alkaline anion-exchange membranes in low temperature fuel cells. Fuel Cells 5:187–200. doi:10.1002/fuce.200400045Google Scholar
  7. 7.
    Yan J, Hickner MA (2009) Efficient synthesis and properties of anion exchange membranes. Polym Preprints 50:272–273Google Scholar
  8. 8.
    Fang FJ, Yang Y, Lu X, Ye M, Li W, Zhang Y (2012) Cross-linked, ETFE-derived and radiation grafted membranes for anion exchange membrane fuel cell applications. Int J Hydrogen Energy 37:594–602. doi:10.1016/j.ijhydene.2011.09.112Google Scholar
  9. 9.
    Agel E, Bouet J, Fauvarque JF (2001) Characterization and use of anionic membranes for alkaline fuel cells. J Power Sources 101:267–274Google Scholar
  10. 10.
    Wan Y, Peppley B, Creber KAM, Bui VT, Halliop E (2008) Quaternized-chitosan membranes for possible applications in alkaline fuel cells. J Power Sources 185:183–187Google Scholar
  11. 11.
    Xiong Y, Fang J, Zeng QH, Liu QL (2008) Preparation and characterization of cross-linked quaternized poly(vinyl alcohol) membranes for anion exchange membrane fuel cells. J Membrane Sci 311:319–325. doi:10.1016/j.memsci.2007.12.029Google Scholar
  12. 12.
    Li L, Wang Y (2005) Quaternized polyethersulfone Cardo anion exchange membranes for direct methanol alkaline fuel cells. J Membrane Sci 262:1–4. doi:10.1016/j.memsci.2005.07.009Google Scholar
  13. 13.
    Park JS, Park GG, Park SH, Yoon YG, Kim GS, Lee WY (2007) Development of solid-state alkaline electrolytes for solid alkaline fuel cells. Macromol Symp 249–250:174–182. doi:10.1002/masy.200750329Google Scholar
  14. 14.
    Tanaka M, Fukasawa K, Nishino E, Yamaguchi S, Yamada K, Tanaka H, Bae B, Miyatake K, Watanabe M (2011) Anion conductive block poly(arylene ether)s: synthesis, properties, and application in alkaline fuel cells. J Am Chem Soc 133:10646–10654. doi:10.1021/ja204166eGoogle Scholar
  15. 15.
    Adams LA, Poynton SD, Tamain C, Slade RCT, Varcoe JR (2008) A carbon dioxide tolerant aqueous-electrolyte-free anion-exchange membrane alkaline fuel cell. ChemSusChem 1:79–81. doi:10.1002/cssc.200700013Google Scholar
  16. 16.
    Inaba M, Matsui Y, Saito M, Tasaka A, Fukuta K, Watanabe S, Yanagi H (2011) Effects of carbon dioxide on the performance of anion-exchange membrane fuel cells. Electrochemistry 79:322–325Google Scholar
  17. 17.
    Unlu M, Zhou J, Kohl PA (2009) Anion exchange membrane fuel cells: experimental comparison of hydroxide and carbonate conductive ions. Electrochem Solid State Lett 12:B27–B30. doi:10.1149/1.3058999Google Scholar
  18. 18.
    Wang Y, Li L, Hu L, Zhuang L, Lu J, Xu B (2003) A feasibility analysis for alkaline membrane direct methanol fuel cell: thermodynamic disadvantages versus kinetic advantages. Electrochem Commun 5:662–666. doi:10.1016/S1388-2481(03)00148-6Google Scholar
  19. 19.
    Siroma Z, Watanabe S, Yasuda K, Fukuta K, Yanagi H (2011) Mathematical modeling of the concentration profile of carbonate ions in an anion exchange membrane fuel cell. J Electrochem Soc 158:B682–B689. doi:10.1149/1.3576120Google Scholar
  20. 20.
    Kim YS (2010) Resonance-stabilized anion exchange polymer electrolytes. In: Annual merit review and peer evaluation meeting, DOE hydrogen program and vehicle technologies program. http://www.hydrogen.energy.gov/pdfs/review10/fc043_kim_2010_o_web.pdf. Accessed 7 Nov 2012
  21. 21.
    Lin B, Qiu L, Qiu B, Peng Y, Yan F (2011) A soluble and conductive polyfluorene ionomer with pendant imidazolium groups for alkaline fuel cell applications. Macromolecules 44:9642–9649. doi:10.1021/ma202159dGoogle Scholar
  22. 22.
    Bauer B, Strathmann H, Effenberger F (1990) Anion-exchange membranes with improved alkaline stability. Desalination 79:125–144Google Scholar
  23. 23.
    Sata T, Tsujimoto M, Yamaguchi T, Matsusaki K (1996) Change of anion exchange membranes in an aqueous sodium hydroxide solution at high temperature. J Memb Sci 112:161–170Google Scholar
  24. 24.
    Varcoe JR, Slade RCT, Yee ELH, Poynton SD, Driscoll DJ, Apperley DC (2007) Poly(ethylene-co-tetrafluoroethylene)-derived radiation-grafted anion-exchange membrane with properties specifically tailored for application in metal-cation-free alkaline polymer electrolyte fuel cells. Chem Mater 19:2686–2693. doi:10.1021/cm062407uGoogle Scholar
  25. 25.
    Poynton SD, Zeng R, Kizewski J, Ong AL, Varcoe JR (2012) Development of alkaline exchange ionomers for use in alkaline polymer electrolyte fuel cells. ECS Trans 50(2):2067–2073Google Scholar
  26. 26.
    Qiu B, Lin B, Qiu L, Yan F (2012) Alkaline imidazolium- and quaternary ammonium-functionalized anion exchange membranes for alkaline fuel cell applications. J Mater Chem 22:1040–1045. doi:10.1039/c1jm14331jGoogle Scholar
  27. 27.
    Yanagi H, Fukuta K (2008) Anion exchange membrane and ionomer for alkaline membrane fuel cells (AMFCs). ECS Trans 16(2):257–262. doi:10.1149/1.2981860Google Scholar
  28. 28.
    Luo Y, Guo J, Wang C, Chu D (2011) Tunable high-molecular-weight anion-exchange membranes for alkaline fuel cells. Macromol Chem Phys 212:2094–2102. doi:10.1002/macp.201100218Google Scholar
  29. 29.
    Einsla BR, Chempath S, Pratt LR, Boncella JM, Rau J, Macomber C, Pivovar BS (2007) Stability of cations for anion exchange membrane fuel cells. ECS Trans 11(1):1173–1180Google Scholar
  30. 30.
    Chempath S, Einsla BR, Pratt LR, Macomber CS, Boncella JM, Rau JA, Pivovar BS (2008) Mechanism of tetraalkylammonium headgroup degradation in alkaline fuel cell membranes. J Phys Chem C 112(9):3179–3182Google Scholar
  31. 31.
    Schwesinger R, Link R, Wenzl P, Kossek S, Keller M (2006) Extremely base-resistant organic phosphazenium cations. Chem Eur J 12(2):429–437. doi:10.1002/chem.200500837Google Scholar
  32. 32.
    Dekel D (2012) Latest advances in alkaline membrane fuel cell (AMFC) technology. In: Carisma 2012 – 3rd Carisma international conference, Copenhagen, 3 Sept 2012. http://www.hotmea.kemi.dtu.dk/upload/institutter/ki/hotmea/carisma%202012/abstracts/dekel%20carisma%202012.pdf. Accessed 17 Dec 2012
  33. 33.
    Pivovar BS (2011) Alkaline membrane fuel cell workshop final report. http://www.nrel.gov/docs/fy12osti/54297.pdf. Accessed 6 Nov 2012
  34. 34.
    Fujimoto CH, Hickner MA, Cornelius CJ, Loy DA (2005) Ionomeric poly(phenylene) prepared by Diels–Alder polymerization: synthesis and physical properties of a novel polyelectrolyte. Macromolecules 38(12):5010–5016. doi:10.1021/ma0482720Google Scholar
  35. 35.
    Miyazaki K, Sugimura N, Kawakita KI, Abe T, Nishio K, Nakanishi H, Matsuoka M, Ogumi Z (2010) Aminated perfluorosulfonic acid ionomers to improve the triple phase boundary region in anion-exchange membrane fuel cells. J Electrochem Soc 157(11):A1153–A1157. doi:10.1149/1.3483105Google Scholar
  36. 36.
    Tomoi M, Yamaguchi K, Ando R, Kantake Y, Aosaki Y, Kubota H (1997) Synthesis and thermal stability of novel anion exchange resins with spacer chains. J Appl Polym Sci 64:1161–1167Google Scholar
  37. 37.
    Hao JH, Chen C, Li L, Yu L, Jiang W (2000) Preparation of solvent-resistant anion-exchange membranes. Desalination 129:15–22Google Scholar
  38. 38.
    Pan J, Li Y, Zhuang L, Lu J (2010) Self-crosslinked alkaline polymer electrolyte exceptionally stable at 90 °C. Chem Commun 46:8597–8599. doi:10.1039/C0CC03618HGoogle Scholar
  39. 39.
    Faraj M, Elia E, Boccia M, Filpi A, Pucci A, Ciardelli F (2011) New anion conducting membranes based on functionalized styrene–butadiene–styrene triblock copolymer for fuel cells applications. J Polym Sci A Polym Chem 49:3437–3447. doi:10.1002/pola.24781Google Scholar
  40. 40.
    Stoica D, Ogier L, Akrour L, Alloin F, Fauvarque JF (2007) Anionic membrane based on polyepichlorhydrin matrix for alkaline fuel cell: synthesis, physical and electrochemical properties. Electrochim Acta 53:1596–1603. doi:10.1016/j.electacta.2007.03.034Google Scholar
  41. 41.
    Daikoku Y, Isomura T, Fukuta K, Yanagi H, Yamaguchi M (2011) Anion-exchange membrane and method for producing the same. US Patent Appl, US 2011/0281197 A1. http://appft1.uspto.gov/netacgi/nph-Parser?Sect1=PTO1&Sect2=HITOFF&d=PG01&p=1&u=/netahtml/PTO/srchnum.html&r=1&f=G&l=50&s1=20110281197.PGNR. Accessed 12 Nov 2012
  42. 42.
    Yao W, Tsai T, Chang YM, Chen M (2001) Polymer-based hydroxide conducting membranes. US Patent 6,183,914Google Scholar
  43. 43.
    Chen D, Hickner MA (2012) Degradation of imidazolium- and quaternary ammonium-functionalized poly(fluorenyl ether ketone sulfone) anion exchange membranes. ACS Appl Mater Interfaces. doi:10.1021/am301557wGoogle Scholar
  44. 44.
    Deavin OI, Murphy S, Ong AL, Poynton SD, Zeng R, Hermanac H, Varcoe JR (2012) Anion-exchange membranes for alkaline polymer electrolyte fuel cells: comparison of pendent benzyltrimethylammonium- and benzylmethylimidazolium-head-groups. Energy Environ Sci 5:8584–8597. doi:10.1039/c2ee22466fGoogle Scholar
  45. 45.
    Kim DS, Labouriau A, Guiver MD, Kim YS (2011) Guanidinium-functionalized anion exchange polymer electrolytes via activated fluorophenyl-amine reaction. Chem Mater 23:3795–3797. doi:10.1021/cm2016164Google Scholar
  46. 46.
    Wang J, Li S, Zhang S (2010) Novel hydroxide-conducting polyelectrolyte composed of an poly(arylene ether sulfone) containing pendant quaternary guanidinium groups for alkaline fuel cell applications. Macromolecules 43:3890–3896. doi:10.1021/ma100260aGoogle Scholar
  47. 47.
    Qu C, Zhang H, Zhang F, Liu B (2012) A high-performance anion exchange membrane based on bi-guanidinium bridged polysilsesquioxane for alkaline fuel cell application. J Mater Chem 22:8203–8207. doi:10.1039/c2jm16211cGoogle Scholar
  48. 48.
    Gu S, Cai R, Luo T, Yan Y (2008) Synthesis and characterizations of quaternary phosphonium polysulfone anion exchange membrane for alkaline fuel cell. In: 214th ECS Meeting, Abstract #1107. http://ma.ecsdl.org/content/MA2008-02/11/1107.full.pdf+html. Accessed 20 Dec 2012
  49. 49.
    Gu S, Cai R, Luo T, Chen Z, Sun M, Liu Y, He G, Yan Y (2009) A soluble and highly conductive ionomer for high-performance hydroxide exchange membrane fuel cells. Angew Chem Int Ed Engl 121:6621–6624. doi:10.1002/ange.200806299Google Scholar
  50. 50.
    Kong X, Wadhwa K, Verkade JG, Schmidt-Rohr K (2009) Determination of the structure of a novel anion exchange fuel cell membrane by solid-state nuclear magnetic resonance spectroscopy. Macromolecules 42(5):1659–1664. doi:10.1021/ma802613kGoogle Scholar
  51. 51.
    Pivovar BS, Thorn DL (2009) Anion-conducting polymer, composition, and membrane. US Patent 7,582,683Google Scholar
  52. 52.
    Zhang B, Gu S, Wang J, Liu Y, Herring AM, Yan Y (2012) Tertiary sulfonium as a cationic functional group for hydroxide exchange membranes. RSC Adv 2:12683–12685. doi:10.1039/C2RA21402DGoogle Scholar
  53. 53.
    Pivovar BS (2010) Fundamentals of hydroxide conducting systems for fuel cells and electrolyzers. In: 2010 annual merit review meeting, DOE hydrogen program. http://www.hydrogen.energy.gov/pdfs/review10/bes016_pivovar_2010_o_web.pdf. Accessed 12 Nov 2012
  54. 54.
    Long H, Kim K, Pivovar BS (2012) Hydroxide degradation pathways for substituted trimethylammonium cations: a DFT study. J Phys Chem C 116(17):9419–9426Google Scholar
  55. 55.
    Herring AM, Pivovar BS (2011) Anion exchange membranes for fuel cells. http://www1.eere.energy.gov/hydrogenandfuelcells/pdfs/amfc_110811_herring.pdf. Accessed 21 Dec 2012
  56. 56.
    Zhang F, Zhang H, Ren J, Qu C (2010) PTFE based composite anion exchange membranes: thermally induced in situ polymerization and direct hydrazine hydrate fuel cell application. J Mater Chem 20:8139–8146. doi:10.1039/c0jm01311kGoogle Scholar
  57. 57.
    Kim YS (2012) Resonance-stabilized anion exchange polymer electrolytes. US DOE Hydrogen and fuel cells program and vehicle technologies program annual merit review. http://www.hydrogen.energy.gov/pdfs/review12/fc043_kim_2012_p.pdf. Accessed 13 Nov 2012
  58. 58.
    Dekel D. Alkaline membrane fuel cells. In: Savinell R, Ota K, Kreysa G (eds) Encyclopedia of applied electrochemistry: springer reference (www.springerreference.com). Springer, Berlin/Heidelberg, 0. doi: 10.1007/SpringerReference_303632 2012-12-04 06:42:39 UTC

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.CellEra Inc.CaesareaIsrael