Skip to main content

Dye-Sensitized Electrode, Photoanode

  • Reference work entry
  • First Online:
Encyclopedia of Applied Electrochemistry
  • 128 Accesses

Introduction

Study of dye-sensitized semiconductor electrodes has started in the late 1960s as an extension of photographic science where silver halide grains are photosensitive materials to be spectrally sensitized. Dye molecules adsorbed on the surface of silver halide crystals and photoexcited by absorption of visible light act as electron donors to silver halide and spectrally sensitize the formation of silver image. Gerischer and co-workers explored various semiconductors of metal oxides and inorganic compounds which can be sensitized with organic dyes in the structure of electrochemical cell [1, 2]. As the result of sensitization, n-type semiconductors such as ZnO, TiO2, and CdS generate anodic photocurrents, and p-type semiconductors such as GaP generate cathodic photocurrents with their action spectra following the absorption spectra of the sensitizing dyes. The dye-sensitized photocurrent is generally larger in density and efficiency in the n-type sensitization than the...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 999.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Tributsch H, Gerischer H (1969) The use of semiconductor electrodes in the study of photochemical reactions. Ber Bunsenges Phys Chem 73:850–854 and references therein

    CAS  Google Scholar 

  2. Memming R (2001) Semiconductor electrochemistry. Wiley-VCH, Weinheim

    Google Scholar 

  3. Tributsch H, Calvin M (1971) Electrochemistry of excited molecules: photoelectrochemical reaction of chlorophylls. Photochem Photobiol 14:95–112

    CAS  Google Scholar 

  4. Fujishima A, Honda K (1972) Electrochemical photolysis of water at a semiconductor electrode. Nature 238:37–38

    CAS  Google Scholar 

  5. Kuhn H, Möbius D, Bücher H (1972) Spectroscopy of monolayer assemblies. Physical Methods in Chemistry. In: A. Weissberger and B. W. Rossiter (eds.), Part IIIB Optical, Spectroscopic, and Radioactivity Methods. Wiley-Interscience, New York, 577–578

    Google Scholar 

  6. Miyasaka T, Watanabe T, Fujishima A, Honda K (1979) Highly efficient quantum conversion at chlorophyll a-lecithin mixed monolayer coated electrode. Nature 277:638–640

    CAS  Google Scholar 

  7. Miyasaka T, Watanabe T, Fujishima A, Honda K (1980) Photoelectrochemical study of chlorophyll-a multilayers on SnO2 electrode. Photochem Photobiol 32:217–222

    CAS  Google Scholar 

  8. Tani T (1995) Photographic sensitivity: theory and mechanisms. Oxford University Press, New York

    Google Scholar 

  9. O’Regan B, Grätzel M (1991) A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films. Nature 335:737–740

    Google Scholar 

  10. Nazeeruddin MK, Pechy P, Grätzel M (1997) Efficient panchromatic sensitization of nanocrystalline TiO2 films by a black dye based on a trithiocyanato-ruthenium complex. J Chem Commun 18:1705–1706

    Google Scholar 

  11. Wang P, Zakeerruddin SM, Comte P, Charvet R, Humphry-Baker R, Grätzel M (2003) Enhance the performance of dye-sensitized solar cells by co-grafting amphiphilic sensitizer and hexadecylmalonic acid on TiO2 nanocrystals. J Phys Chem B 107:14336–14341

    CAS  Google Scholar 

  12. Chen CY, Wu SJ, Wu CG, Chen JG, Ho KC (2006) A ruthenium complex with superhigh light-harvesting capacity for dye-sensitized solar cells. Angew Chem Int Ed 45:5822–5825

    CAS  Google Scholar 

  13. Jiang KJ, Masaki N, Xia JB, Noda S, Yanagida S (2006) A novel ruthenium sensitizer with a hydrophobic 2-thiophen-2-yl-vinyl-conjugated bipyridyl ligand for effective dye sensitized TiO2 solar cells. Chem Comm 23:2460–2462

    Google Scholar 

  14. Wang P, Klein C, Humphry-Baker R, Zakeerruddin SM, Grätzel M (2005) A high molar extinction coefficient sensitizer for stable dye-sensitized solar cells. J Am Chem Soc 127:808–809

    CAS  Google Scholar 

  15. Chen CY, Wang M, Li JY, Pootrakulchote N, Alibabaei L, Ngoc-le C, Decoppet JD, Tsai JH, Grätzel C, Wu CG, Zakeeruddin SM, Grätzel M (2009) Highly efficient light-harvesting ruthenium sensitizer for thin-film dye-sensitized solar cells. ACS Nano 3:3103–3109

    CAS  Google Scholar 

  16. Horiuchi T, Miura H, Sumioka K, Uchida S (2004) High efficiency of dye-sensitized solar cells based on metal-free indoline dyes. J Am Chem Soc 126:12218–12219

    CAS  Google Scholar 

  17. Ito S, Zakeeruddin SM, Humphry-Baker R, Liska P, Charvet R, Comte P, Nazeeruddin MK, Péchy P, Takata M, Miura H, Uchida S, Grätzel M (2006) High-efficiency organic-dye- sensitized solar cells controlled by nanocrystalline-TiO2 electrode thickness. Adv Mater 18:1202–1205

    CAS  Google Scholar 

  18. Kuang D, Uchida S, Humphry-Baker R, Zakeeruddin SM, Grätzel M (2008) Organic dye-sensitized ionic liquid based solar cells: remarkable enhancement in performance through molecular design of indoline sensitizers. Angew Chem Int Ed 47:1923–1927

    CAS  Google Scholar 

  19. Zhang XH, Wang ZS, Cui Y, Koumura N, Furube A, Hara K (2009) Organic sensitizers based on hexylthiophene-functionalized indolo[3,2-b]carbazole for efficient dye-sensitized solar cells. J Phys Chem C 113:13409–13415

    CAS  Google Scholar 

  20. Ikegami M, Ozeki M, Kijitori Y, Miyasaka T (2008) Chlorin-sensitized high-efficiency photovoltaic cells that mimic spectral response of photosynthesis. Electrochem 76:140–143

    CAS  Google Scholar 

  21. Yella A, Lee HW, Tsao HN, Yi C, Chandiran AK, Nazeeruddin MK, Diau EWG, Yeh CY, Zakeeruddin SM, Grätzel M (2011) Porphyrin-sensitized solar cells with cobalt (II/III)–based redox electrolyte exceed 12 percent efficiency. Science 334:629–634

    CAS  Google Scholar 

  22. Yu Q, Zhou D, Shi Y, Si X, Wang Y, Wang P (2010) Stable and efficient dye-sensitized solar cells: photophysical and electrical characterizations. Energy Environ Sci 3:1722–1725

    CAS  Google Scholar 

  23. Chang CH, Lee YL (2007) Chemical bath deposition of CdS quantum dots onto mesoscopic TiO2 films for application in quantum-dot-sensitized solar cells. Appl Phys Lett 91:053503–1–053503–3

    Google Scholar 

  24. Diguna LJ, Shen Q, Kobayashi J, Toyoda T (2007) High efficiency of CdSe quantum-dot-sensitized TiO2 inverse opal solar cells. Appl Phys Lett 91:023116–1–023116–3

    Google Scholar 

  25. Plass R, Pelet S, Krueger J, Grätzel M, Bach U (2002) Quantum dot sensitization of organic–inorganic hybrid solar cells. J Phys Chem B 106:7578–7580

    CAS  Google Scholar 

  26. Kojima A, Teshima K, Shirai Y, Miyasaka T (2009) Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. J Am Chem Soc 131:6050–6051

    CAS  Google Scholar 

  27. Lee MM, Teuscher J, Miyasaka T, Murakami TN, Snaith HJ (2012) Efficient hybrid solar cells based on meso-superstructured organometal halide perovskites. Science 338:643–647

    CAS  Google Scholar 

  28. Noh JH, Im SH, Heo JH, Mandal TN, Seok SI (2013) Chemical management for colorful, efficient, and stable inorganic − organic hybrid nanostructured solar cells. Nano Lett 13:1764–1769

    CAS  Google Scholar 

  29. Grätzel M (2013) Perovskite nano-pigments and new molecularly engineered porphyrin light harvesters for mesoscopic solar cells. Hybrid and Organic Photovoltaics Conference (HOPV13), Sevilla, Spain, 7 May 2013

    Google Scholar 

  30. Miyasaka T, Ikegami M, Kijitori Y (2007) Photovoltaic performance of plastic dyesensitized electrodes prepared by low-temperature binder-free coating of mesoscopic titania. J Electrochem Soc 154:A455–A461

    CAS  Google Scholar 

  31. Lee KM, Wu SJ, Chen CY, Wu CG, Ikegami M, Miyoshi K, Miyasaka T, Ho KC (2009) Efficient and stable plastic dye-sensitized solar cells based on a high light-harvesting ruthenium sensitizer. J Mater Chem 19:5009–5015

    CAS  Google Scholar 

  32. Miyasaka T (2011) Toward printable sensitized mesoscopic solar cells: Light-harvesting management with Thin TiO2 films. J Phys Chem Lett 2:262–269

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tsutomu Miyasaka .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this entry

Cite this entry

Miyasaka, T. (2014). Dye-Sensitized Electrode, Photoanode. In: Kreysa, G., Ota, Ki., Savinell, R.F. (eds) Encyclopedia of Applied Electrochemistry. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-6996-5_493

Download citation

Publish with us

Policies and ethics