Skip to main content

Electrocatalysis - Basic Concepts, Theoretical Treatments in Electrocatalysis via DFT-Based Simulations

  • Reference work entry
  • First Online:
Encyclopedia of Applied Electrochemistry
  • 509 Accesses

Introduction

Computational modeling in electrocatalysis affords detailed information at the atomic level that cannot be obtained easily from experiments, so greatly helping to rationalize the design of catalytic materials with high activity, low loading, and enhanced durability. In particular, density functional theory (DFT) [1] is used extensively in electrocatalysis because this approach entails far less computational time than do conventional wave-function methods, while offering reliable results. In particular, owing to the recent enormous decrease in the costs of hardware and to the continuing development of algorithms, expectedly there will be a rapid rise in the popularity of employing DFT methods for designing electrocatalysts. Furthermore, such calculations provide substantial insights into electrode reaction mechanisms(e.g., the oxygen reduction reaction (ORR) [2–9], the hydrogen evolution reaction (HER) [10], and the oxidation of alcohols [11, 12]). Reaction mechanisms are...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 999.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kohn W, Sham LJ (1965) Self-consistent equations including exchange and correlation effects. Phys Rev B 140:A1133

    Google Scholar 

  2. Wang JX et al (2011) Kirkendall effect and lattice contraction in nanocatalysts: a new strategy to enhance sustainable activity. J Am Ceram Soc 133:13551–13557

    CAS  Google Scholar 

  3. Wang JX, Inada H, Wu L, Zhu Y, Choi Y, Liu P, Zhou W-P, Adzic RR (2009) Oxygen reduction on well-defined core-shell nanocatalysts: particle size, facet, and Pt shell thickness effects. J Am Chem Soc 131:17298–17302

    CAS  Google Scholar 

  4. Nørskov JK, Rossmeisl J, Logadottir A, Lindqvist L, Kitchin JR, Bligaard T, Jónsson H (2004) Origin of the overpotential for oxygen reduction at a fuel-cell cathode. J Phys Chem B 108:17886–17892

    Google Scholar 

  5. Zhang J, Vukmirovic MB, Xu Y, Mavrikakis M, Adzic RR (2005) Controlling the catalytic activity of platinum-monolayer electrocatalysts for oxygen reduction with different substrates. Angew Chem Int Ed 44:2132–2135

    CAS  Google Scholar 

  6. P S et al (2010) Lattice-strain control of the activity in dealloyed core–shell fuel cell catalysts. Nat Chem 2:454–460

    Google Scholar 

  7. Ramírez-Caballero GE, Balbuena PB (2010) Dissolution-resistant core-shell materials for acid medium oxygen reduction electrocatalysts. J Phys Chem Lett 1:724–728

    Google Scholar 

  8. Tang W, Henkelman G (2009) Charge redistribution in core-shell nanoparticles to promote oxygen reduction. J Chem Phys 130:194504

    Google Scholar 

  9. Nørskov JK, Bligaard T, Rossmeisl J, Christensen CH (2009) Towards the computational design of solid catalysts. Nat Chem 1:37–46

    Google Scholar 

  10. Hinnemann B, Moses PG, Bonde J, Jørgensen KP, Nielsen JH, Horch S, Chorkendorff I, Nørskov JK (2005) Biomimetic hydrogen evolution: MoS2 nanoparticles as catalyst for hydrogen evolution. J Am Chem Soc 127:5308–5309

    CAS  Google Scholar 

  11. Cao D, Lu GQ, Wieckowski A, Wasileski SA, Neurock M (2005) Mechanisms of methanol decomposition on platinum: a combined experimental and ab initio approach. J Phys Chem B 109:11622–11633

    CAS  Google Scholar 

  12. A K et al (2009) Ternary Pt/Rh/SnO2 electrocatalysts for oxidizing ethanol to CO2. Nat Mater 8:325–330

    Google Scholar 

  13. Bockris JOM, Khan SUM (1993) Surface electrochemistry: a molecular level approach. Plenum Press, New York

    Google Scholar 

  14. Levine IN (1991) Quantum chemistry, 4th edn. Prentice-Hall, New Jersey

    Google Scholar 

  15. Huang P, Carter EA (2008) Advances in correlated electronic structure methods for solids, surfaces, and nanostructures. Annu Rev Phys Chem 59:261–290

    CAS  Google Scholar 

  16. Jensen F (1999) Introduction to computational chemistry. Wiley, New York

    Google Scholar 

  17. Jacob T, Goddard WA III (2004) Adsorption of atomic H and O on the (111) surface of Pt3Ni alloys. J Phys Chem B 108:8311–8323

    CAS  Google Scholar 

  18. Henkelman G, Uberuaga BP, Jönsson H (2000) A climbing image nudged elastic band method for finding saddle points and minimum energy paths. J Chem Phys 113:9901

    CAS  Google Scholar 

  19. Laidler KJ (1987) Chemical kinetics, 3rd edn. Harper and Row, New York

    Google Scholar 

  20. Henkelman G, Arnaldsson A, Jonsson H (2006) A fast and robust algorithm for Bader decomposition of charge density. Comput Mater Sci 36:354–360

    Google Scholar 

  21. http://theory.cm.utexas.edu/bader/

  22. Bader RFW, Beddall PM (1972) Virial field relationship for molecular charge distributions and spatial partitioning of molecular properties. J Chem Phys 56:3320–3329

    CAS  Google Scholar 

  23. Hammer B, Nørskov JK (1995) Electronic factors determining the reactivity of metal surfaces. Surf Sci 343:211–220

    CAS  Google Scholar 

  24. (Copyright MPI für Festkörperforschung Stuttgart 1997–2001)

    Google Scholar 

  25. Giannozzi P et al (2009) QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials. J Phys Condens Matter 21(39):395502

    Google Scholar 

  26. Clark SJ, Segall MD, Pickard CJ, Hasnip PJ, Probert MJ, Refson K, Payne MC (2005) First principles methods using CASTEP. Z Kristallogr 220:567–570

    CAS  Google Scholar 

  27. Kresse G, Hafner J (1993) Ab initio molecular dynamics for liquid metals. Phys Rev B 47:558–561

    CAS  Google Scholar 

  28. Kresse G, Furthmuller J (1996) Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys Rev B 54:11169–11186

    CAS  Google Scholar 

  29. Keith JA, Jacob T (2010) Theoretical studies of potential-dependent and competing mechanisms of the electrocatalytic oxygen reduction reaction on Pt(111). Angew Chemie Int Ed 49:9521–9525

    CAS  Google Scholar 

  30. Rossmeisl J, Skúlason E, Björketun ME, Tripkovic V, Nørskov JK (2008) Modeling the electrified solid–liquid interface. Chem Phys Lett 466:68–71

    CAS  Google Scholar 

  31. Sasaki K, Naohara H, Cai Y, Choi YM, Liu P, Vukmirovic MB, Wang JX, Adzic RR (2010) Core-protected platinum monolayer shell high-stability electrocatalysts for fuel-cell cathodes. Angew Chem Int Ed 49:8602–8607

    CAS  Google Scholar 

  32. Ruban AV, Skriver HL, Nørskov JK (1999) Surface segregation energies in transition-metal alloys. Phys Rev B 59:15990–16000

    Google Scholar 

  33. Kuttiyiel KA, Sasaki K, Choi Y, Su D, Liu P, Adzic RR (2012) Bimetallic IrNi core platinum monolayer shell electrocatalysts for the oxygen reduction reaction. Energy Environ Sci 5:5297–5304

    CAS  Google Scholar 

  34. Karlberg GS, Jaramillo TF, Skúlason E, Rossmeisl J, Bligaard T, Nørskov JK (2007) Cyclic voltammograms for H on Pt(111) and Pt(100) from first principles. Phys Rev Lett 99:126101

    CAS  Google Scholar 

  35. Froemming NS, Henkelman G (2009) Optimizing core-shell nanoparticle catalysts with a genetic algorithm. J Chem Phys 131:234103

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to YongMan Choi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this entry

Cite this entry

Choi, Y. (2014). Electrocatalysis - Basic Concepts, Theoretical Treatments in Electrocatalysis via DFT-Based Simulations. In: Kreysa, G., Ota, Ki., Savinell, R.F. (eds) Encyclopedia of Applied Electrochemistry. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-6996-5_486

Download citation

Publish with us

Policies and ethics