Skip to main content

Grain-Boundary Conductivity

  • Reference work entry
  • First Online:
Book cover Encyclopedia of Applied Electrochemistry
  • 283 Accesses

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 999.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Goodenough JB (2003) Oxide-ion electrolytes. Annu Rev Mater Res 33:91–128

    CAS  Google Scholar 

  2. Goodenough JB (1997) Ceramic solid electrolytes. Solid State Ion 94:17–25

    CAS  Google Scholar 

  3. Goodenough JB (1995) Solid electrolytes. Pure Appl Chem 67:931–938

    CAS  Google Scholar 

  4. Ishihara T, Matsuda H, Takita Y (1994) Doped LaGao3 perovskite-type oxide as a new oxide ionic conductor. J Am Chem Soc 116:3801–3803

    CAS  Google Scholar 

  5. Kreuer KD (2003) Proton-conducting oxides. Annu Rev Mater Res 33:333–359

    CAS  Google Scholar 

  6. Badwal SPS (1995) Grain-boundary resistivity in zirconia-based materials - effect of sintering temperatures and impurities. Solid State Ion 76:67–80

    CAS  Google Scholar 

  7. Badwal SPS, Rajendran S (1994) Effect of microstructures and nanostructures on the properties of ionic conductors. Solid State Ion 70:83–95

    Google Scholar 

  8. Badwal SPS (1992) Zirconia-based solid electrolytes - microstructure, stability and ionic-conductivity. Solid State Ion 52:23–32

    CAS  Google Scholar 

  9. Aoki M, Chiang YM, Kosacki I, Lee IJR, Tuller H, Liu YP (1996) Solute segregation and grain-boundary impedance in high-purity stabilized zirconia. J Am Ceram Soc 79:1169–1180

    CAS  Google Scholar 

  10. Christie GM, vanBerkel FPF (1996) Microstructure - ionic conductivity relationships in ceria-gadolinia electrolytes. Solid State Ion 83:17–27

    CAS  Google Scholar 

  11. Maier J (1995) Ionic-conduction in-space charge regions. Prog Solid State Ch 23:171–263

    CAS  Google Scholar 

  12. Kim S, Fleig J, Maier J (2003) Space charge conduction: simple analytical solutions for ionic and mixed conductors and application to nanocrystalline ceria. Phys Chem Chem Phys 5:2268–2273

    CAS  Google Scholar 

  13. Guo X, Maier J (2001) Grain boundary blocking effect in zirconia: a Schottky barrier analysis. J Electrochem Soc 148:E121–E126

    CAS  Google Scholar 

  14. Guo X, Waser R (2006) Electrical properties of the grain boundaries of oxygen ion conductors: acceptor-doped zirconia and ceria. Prog Mater Sci 51:151–210

    CAS  Google Scholar 

  15. Iguchi F, Chen CT, Yugami H, Kim S (2011) Direct evidence of potential barriers at grain boundaries in Y-doped BaZrO(3) from dc-bias dependence measurements. J Mater Chem 21:16517–16523

    CAS  Google Scholar 

  16. Chen CT, Danel CE, Kim S (2011) On the origin of the blocking effect of grain-boundaries on proton transport in yttrium-doped barium zirconates. J Mater Chem 21:5435–5442

    CAS  Google Scholar 

  17. Avila-Paredes HJ, Choi K, Chen CT, Kim S (2009) Dopant-concentration dependence of grain-boundary conductivity in ceria: a space-charge analysis. J Mater Chem 19:4837–4842

    CAS  Google Scholar 

  18. Park HJ, Kim S (2008) The enhanced electronic transference number at the grain boundaries in Sr-doped LaGaO3. Solid State Ion 179:1329–1332

    CAS  Google Scholar 

  19. Park HJ, Kim S (2007) Space charge effects on the interfacial conduction in Sr-doped lanthanum gallates: a quantitative analysis. J Phys Chem C 111:14903–14910

    CAS  Google Scholar 

  20. Lee JS, Anselmi-Tamburini U, Munir ZA, Kim S (2006) Direct evidence of electron accumulation in the grain boundary of yttria- doped nanocrystalline zirconia ceramics. Electrochem Solid State Lett 9:J34–J36

    CAS  Google Scholar 

  21. Avila-Paredes HJ, Kim S (2006) The effect of segregated transition metal ions on the grain boundary resistivity of gadolinium doped ceria: alteration of the space charge potential. Solid State Ion 177:3075–3080

    CAS  Google Scholar 

  22. Kim S, Maier J (2002) On the conductivity mechanism of nanocrystalline ceria. J Electrochem Soc 149:J73–J83

    CAS  Google Scholar 

  23. Maier J (2005) Nanoionics: ion transport and electrochemical storage in confined systems. Nat Mater 4:805–815

    CAS  Google Scholar 

  24. Tuller HL, Bishop SR (2010) Tailoring material properties through defect engineering. Chem Lett 39:1226–1231

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sangtae Kim .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this entry

Cite this entry

Kim, S. (2014). Grain-Boundary Conductivity. In: Kreysa, G., Ota, Ki., Savinell, R.F. (eds) Encyclopedia of Applied Electrochemistry. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-6996-5_462

Download citation

Publish with us

Policies and ethics