Skip to main content

Electrolytes for Rechargeable Batteries

  • Reference work entry
  • First Online:
Encyclopedia of Applied Electrochemistry

Introduction

The choice of the electrolyte is one of the most important tasks in designing a cell for a battery. The electrolyte electronically separates the electrodes from reacting directly in a chemical reaction, it transports electrochemically active species to/from the electrodes, and it is responsible for the Ohmic resistance of the cell that determines Joule’s heating and the loss in power and usable electrical energy. In several cell types, the electrolyte takes even its own part in the main electrochemical reactions of the cell. Then, the electrolyte is defined by the specific cell reaction. In other cases, only concentrations of the electrolyte components can be varied within a limited range. Even if the electrolyte does not take part in the main electrochemical reactions, it still has a strong impact on the performance of the cell. Its chemical and electrochemical properties including its conductivity, its liquid range limited by its freezing and boiling temperature, and the...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 999.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Gabel CM, Betz HF, Maron SH (1950) Phase equilibria of the system sulfur trioxide-water. J Am Chem Soc 72:1445–1448

    Google Scholar 

  2. Perry RH, Green DW (2008) Perry’s chemical engineers’ handbook, 8th edn. McGraw-Hill, New York

    Google Scholar 

  3. Ronald D, Rand DAJ (2001) Understanding batteries. Royal Society of Chemistry, Cambridge

    Google Scholar 

  4. Salkind A, Zguris G (2010) Lead-acid batteries. In: Reddy TB (ed) Linden’s handbook of batteries, 4th edn. McGraw-Hill, New York

    Google Scholar 

  5. Blomgren GE (2010) Battery electrolytes. In: Reddy TB (ed) Linden’s handbook of batteries, 4th edn. McGraw-Hill, New York

    Google Scholar 

  6. David LR (2003) CRC handbook of chemistry and physics, 84th edn. CRC Press, Boca Raton

    Google Scholar 

  7. Lawrence HT, Albert HZ (1996) Electrolyte management considerations in modem nickel/hydrogen and nickel/cadmium cell and battery designs. J Power Sources 63:53–61

    CAS  Google Scholar 

  8. Shukla AK, Venugopalan S, Hariprakash B (2001) Nickel-based rechargeable batteries. J Power Sources 100:125–148

    CAS  Google Scholar 

  9. Coates D, Ferreira E, Charkey A (1997) An improved nickel/zinc battery for ventricular assist systems. J Power Sources 65:109–l 15

    CAS  Google Scholar 

  10. Ue M (2009) Role assigned electrolytes: additives. In: Yoshio M, Brodd RJ, Kozawa A (eds) Lithium ion batteries: science and technologies. Springer Science/BusinessMedia LLC, New York

    Google Scholar 

  11. Dahn J, Ehrlich GM (2010) Lithium-ion batteries. In: Reddy TB (ed) Linden’s handbook of batteries, 4th edn. McGraw-Hill, New York/London

    Google Scholar 

  12. Schmidt M, Heider U, Kuehner A, Oesten R, Jungnitz M (2001) Lithium fluoroalkylphosphates: a new class of conducting salts for electrolytes for high energy lithium-ion batteries. J Power Sources 97–98:557

    Google Scholar 

  13. Schweiger HG, Multerer M, Schweizer-Berberich M, Gores HJ (2008) Optimization of cycling behaviour of lithium ion cells at 60 °C by additives for electrolytes based on lithium bis[1,2-oxalato(2-)-O, O’] borate. Int Electrochem Sci 3:427–443

    CAS  Google Scholar 

  14. Huggins RA (2011) Lithium alloy anodes. In: Besenhard JO, Daniel C (ed) Handbook of battery materials, 2nd edn. Wiley-VCH, Weinheim

    Google Scholar 

  15. Schedlbauer T, Krüger S, Schmitz R, Schmitz RW, Schreiner C, Gores HJ, Passerini S, Winter M (2013) Lithium difluoro(oxalato)borate: a promising salt for lithium metal based secondary batteries? Electrochim Acta 92:102–107

    CAS  Google Scholar 

  16. Moosbauer D, Zugmann S, Amereller M, Gores HJ (2010) Effect of ionic liquids as additives on lithium electrolytes: conductivity, electrochemical stability, and aluminum corrosion. J Chem Eng Data 55:1794–1798

    CAS  Google Scholar 

  17. Gores HJ, Schweiger HG, Multerer M Optimizing the conductivity of electrolytes for lithium ion cells, in advanced materials and methods for lithium Ion batteries(Ed. S. S. Zhang): advanced materials and methods for lithium ion batteries, Transworld Research Network, Kerala, India, 2007, published 2008, chapter 11, pp. 257–277

    Google Scholar 

  18. Schweiger HG, Multerer M, Schweizer-Berberich M, Gores HJ (2005) Finding conductivity optima of battery electrolytes by conductivity measurements guided by a simplex algorithm. J Electrochem Soc 152:A577–A582

    CAS  Google Scholar 

  19. Zugmann S, Fleischmann M, Amereller M, Gschwind RM, Winter M, Gores HJ (2011) Salt diffusion coefficients, concentration dependence of cell potentials, and transference numbers of lithium difluoromono(oxalato)borate-based solutions. J Chem Eng Data 56:4786–4789

    CAS  Google Scholar 

  20. Zugmann S, Fleischmann M, Amereller M, Gschwind RM, Wiemhöfer HD, Gores HJ (2011) Measurement of transference numbers for lithium ion electrolytes via four different methods, a comparative study. Electrochim Acta 56:3926–3933

    CAS  Google Scholar 

  21. Fetcenko M, Koch J (2010) Nickel-metal hydride batteries. In: Reddy TB (ed) Linden’s handbook of batteries, 4th edn. McGraw-Hill, New York

    Google Scholar 

  22. Berndt D (2003) Electrochemical energy storage. In: Kiehne HA (ed) Battery technology handbook, 2nd edn. Marcel Dekker, New York

    Google Scholar 

  23. Hosung K, Ikhyun O (2008) Electrochemical behavior of the surface-treated nickel hydroxide powder and electrolyte additive LiOH for Ni-MH batteries. J Korean Electrochem Soc 11:115–119

    Google Scholar 

  24. Nishio K, Furukawa N (2011) Practical batteries. In: Besenhard JO, Daniel C (ed) Handbook of battery materials. 2nd edn, Wiley-VCH, Weinheim

    Google Scholar 

  25. Gores HJ, Barthel J, Zugmann S, Moosbauer D, Amereller M, Hartl R, Maurer A (2011). In: Daniel C (Ed) Handbook of battery materials, 2nd edn. Wiley-VCH, Weinheim, Ch. 17, pp. 525–626

    Google Scholar 

  26. Tarascon JM, Guyomard D (1994) New electrolyte compositions stable over the 0 to 5 V voltage range and compatible with the Li1+xMn2O4/ carbon Li-ion cells. Solid State Ion 69:293

    CAS  Google Scholar 

  27. Reddy TB, Hossain S (2002) Rechargeable lithium batteries (ambient temperature), Chapter 34. In: Reddy TB (ed) Linden’s handbook of batteries, 4th edn. McGraw-Hill, New York.

    Google Scholar 

  28. Zhang SS (2007) Lithium oxalyldi?uoroborate as a salt for the Improved electrolytes of Li-ion batteries. ECS Trans 3:59

    CAS  Google Scholar 

  29. Moumouzias G, Ritzoulis G, Siapkas D, Terzidis D (2003) Comparative study of LiBF4, LiAsF6, LiPF6, and LiClO4 as electrolytes in propylene carbonate–diethyl carbonate solutions for Li/LiMn2O4 cells. J Power Sources 122:57

    CAS  Google Scholar 

  30. Xu K, Zhang SS, Jow T, Xu W, Angell C (2002) LiBOB as salt for lithium-ion batteries: a possible solution for high temperature operation. Electrochem Solid-state Lett 5:A26

    CAS  Google Scholar 

  31. Tarascon JM, Armand M (2001) Issues and challenges facing rechargeable lithium batteries. Nature 414:359–367

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Heiner Jakob Gores .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this entry

Cite this entry

Gores, H.J., Schweiger, HG., Kim, WK. (2014). Electrolytes for Rechargeable Batteries. In: Kreysa, G., Ota, Ki., Savinell, R.F. (eds) Encyclopedia of Applied Electrochemistry. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-6996-5_45

Download citation

Publish with us

Policies and ethics