Encyclopedia of Applied Electrochemistry

2014 Edition
| Editors: Gerhard Kreysa, Ken-ichiro Ota, Robert F. Savinell

Formic Acid Oxidation

  • Yijin Kang
  • Christopher B. Murray
Reference work entry
DOI: https://doi.org/10.1007/978-1-4419-6996-5_402


Electrocatalysis of formic acid (FA) oxidation reactions has been intensively studied for two main reasons: (1) FA is an attractive chemical fuel for fuel cell applications due to its high energy density (1,740 Wh/kg, 2,086 Wh/L) and easy storage [1], and (2) FA is the smallest molecule that has four most common chemical bonds in organic compounds (C−H, C=O, C−O, O−H), making FA an ideal model molecule for studying electrooxidation reactions.

Three possible reaction pathways of FA oxidation have been proposed [ 2, 3, 4]:
  1. (i)

    \( \mathrm{ HCOOH}^*\ \to\ \mathrm{ C}\mathrm{ OOH}^* +\ {{\mathrm{ H}}^{+}}+{e^{-}}\ \to\ \mathrm{ C}{{\mathrm{ O}}_2} +\ 2{{\mathrm{ H}}^{+}} + 2{e^{-}} \)

This is a preview of subscription content, log in to check access.


  1. 1.
    Rice C et al (2002) Direct formic acid fuel cells. J Power Sources 111:83–89CrossRefGoogle Scholar
  2. 2.
    Capon A, Parsons R (1973) Oxidation of formic-acid at noble-metal electrodes part. 3. Intermediates and mechanism on platinum-electrodes. J Electroanal Chem 45:205–231CrossRefGoogle Scholar
  3. 3.
    Samjeske G, Miki A, Ye S, Osawa M (2006) Mechanistic study of electrocatalytic oxidation of formic acid at platinum in acidic solution by time-resolved surface-enhanced infrared absorption spectroscopy. J Phys Chem B 110:16559–16566CrossRefGoogle Scholar
  4. 4.
    Neurock M, Janik M, Wieckowski A (2008) A first principles comparison of the mechanism and site requirements for the electrocatalytic oxidation of methanol and formic acid over Pt. Faraday Discuss 140:363–378CrossRefGoogle Scholar
  5. 5.
    Clavilier J, Parsons R, Durand R, Lamy C, Leger JM (1981) Formic-acid oxidation on single-crystal platinum-electrodes – comparison with polycrystalline platinum. J Electroanal Chem 124:321–326CrossRefGoogle Scholar
  6. 6.
    Adzic RR, Tripkovic AV, Ogrady WE (1982) Structural effects in electrocatalysis. Nature 296:137–138CrossRefGoogle Scholar
  7. 7.
    Sun SG, Clavilier J, Bewick A (1988) The mechanism of electrocatalytic oxidation of formic acid on Pt (100) and Pt (111) in sulfuric acid solution – an EMIRS study. J Electroanal Chem 240:147–159CrossRefGoogle Scholar
  8. 8.
    Solla-Gullon J et al (2008) Shape-dependent electrocatalysis: methanol and formic acid electrooxidation on preferentially oriented Pt nanoparticles. Phys Chem Chem Phys 10:3689–3698CrossRefGoogle Scholar
  9. 9.
    Tian N, Zhou ZY, Sun SG, Ding Y, Wang ZL (2007) Synthesis of tetrahexahedral platinum nanocrystals with high-index facets and high electro-oxidation activity. Science 316:732–735CrossRefGoogle Scholar
  10. 10.
    Casado-Rivera E et al (2004) Electrocatalytic activity of ordered intermetallic phases for fuel cell applications. J Am Chem Soc 126:4043–4049CrossRefGoogle Scholar
  11. 11.
    Zhang J, Sasaki K, Sutter E, Adzic RR (2007) Stabilization of platinum oxygen-reduction electrocatalysts using gold clusters. Science 315:220–222CrossRefGoogle Scholar
  12. 12.
    Ji XL et al (2010) Nanocrystalline intermetallics on mesoporous carbon for direct formic acid fuel cell anodes. Nat Chem 2:286–293CrossRefGoogle Scholar
  13. 13.
    Steele BCH, Heinzel A (2001) Materials for fuel-cell technologies. Nature 414:345–352CrossRefGoogle Scholar
  14. 14.
    Stamenkovic VR et al (2007) Trends in electrocatalysis on extended and nanoscale Pt-bimetallic alloy surfaces. Nat Mater 6:241–247CrossRefGoogle Scholar
  15. 15.
    Lim B et al (2009) Pd-Pt bimetallic nanodendrites with high activity for oxygen reduction. Science 324:1302–1305CrossRefGoogle Scholar
  16. 16.
    Stamenkovic VR et al (2007) Improved oxygen reduction activity on Pt3Ni(111) via increased surface site availability. Science 315:493–497CrossRefGoogle Scholar
  17. 17.
    Wang C et al (2011) Multimetallic Au/FePt(3) nanoparticles as highly durable electrocatalyst. Nano Lett 11:919–926CrossRefGoogle Scholar
  18. 18.
    Mazumder V, Lee Y, Sun SH (2010) Recent development of active nanoparticle catalysts for fuel cell reactions. Adv Funct Mater 20:1224–1231CrossRefGoogle Scholar
  19. 19.
    Wang HF, Liu ZP (2009) Formic acid oxidation at Pt/H2O interface from periodic DFT calculations integrated with a continuum solvation model. J Phys Chem C 113:17502–17508CrossRefGoogle Scholar
  20. 20.
    Rice C, Ha S, Masel RI, Wieckowski A (2003) Catalysts for direct formic acid fuel cells. J Power Sources 115:229–235CrossRefGoogle Scholar
  21. 21.
    Lee HJ, Habas SE, Somorjai GA, Yang PD (2008) Localized Pd overgrowth on cubic Pt nanocrystals for enhanced electrocatalytic oxidation of formic acid. J Am Chem Soc 130:5406–5407CrossRefGoogle Scholar
  22. 22.
    Stamenkovic V et al (2006) Changing the activity of electrocatalysts for oxygen reduction by tuning the surface electronic structure. Angew Chem Int Ed 45:2897–2901CrossRefGoogle Scholar
  23. 23.
    Zhang JL, Vukmirovic MB, Xu Y, Mavrikakis M, Adzic RR (2005) Controlling the catalytic activity of platinum-monolayer electrocatalysts for oxygen reduction with different substrates. Angew Chem Int Ed 44:2132–2135CrossRefGoogle Scholar
  24. 24.
    Bauer JC, Chen X, Liu QS, Phan TH, Schaak RE (2008) Converting nanocrystalline metals into alloys and intermetallic compounds for applications in catalysis. J Mater Chem 18:275–282CrossRefGoogle Scholar
  25. 25.
    Adzic RR, Simic DN, Despic AR, Drazic DM (1975) Electrocatalysis by foreign metal monolayers – oxidation of formic-acid on platinum. J Electroanal Chem 65:587–601CrossRefGoogle Scholar
  26. 26.
    Adzic RR, Tripkovic AV, Markovic NM (1983) Structural effects in electrocatalysis – oxidation of formic-acid and oxygen reduction on single-crystal electrodes and the effects of foreign metal adatoms. J Electroanal Chem 150:79–88CrossRefGoogle Scholar
  27. 27.
    Xia XH, Iwasita T (1993) Influence of underpotential deposited lead upon the oxidation of HCOOH in HClO4 at platinum-electrodes. J Electrochem Soc 140:2559–2565CrossRefGoogle Scholar
  28. 28.
    Kang YJ, Murray CB (2010) Synthesis and electrocatalytic properties of cubic Mn-Pt nanocrystals (nanocubes). J Am Chem Soc 132:7568–7569CrossRefGoogle Scholar
  29. 29.
    Markovic NM et al (1995) Electrooxidation mechanisms of methanol and formic-acid on Pt-Ru alloys surfaces. Electrochim Acta 40:91–98CrossRefGoogle Scholar
  30. 30.
    Kang YJ et al (2012) Highly active Pt3Pb and core-shell Pt3Pb-Pt electrocatalysts for formic acid oxidation. ACS Nano 6(3):2818–2825CrossRefGoogle Scholar
  31. 31.
    Maksimuk S, Yang SC, Peng ZM, Yang H (2007) Synthesis and characterization of ordered intermetallic PtPb nanorods. J Am Chem Soc 129:8684–8685CrossRefGoogle Scholar
  32. 32.
    Alden LR, Han DK, Matsumoto F, Abruna HD, DiSalvo FJ (2006) Intermetallic PtPb nanoparticles prepared by sodium naphthalide reduction of metal-organic precursors: electrocatalytic oxidation of formic acid. Chem Mater 18:5591–5596CrossRefGoogle Scholar
  33. 33.
    Wang LL, Johnson DD (2008) Electrocatalytic properties of PtBi and PtPb intermetallic line compounds via DFT: CO and H adsorption. J Phys Chem C 112:8266–8275CrossRefGoogle Scholar
  34. 34.
    Alayoglu S, Nilekar AU, Mavrikakis M, Eichhorn B (2008) Ru-Pt core-shell nanoparticles for preferential oxidation of carbon monoxide in hydrogen. Nat Mater 7:333–338CrossRefGoogle Scholar
  35. 35.
    Sasaki K et al (2010) Core-protected platinum monolayer shell high-stability electrocatalysts for fuel-cell cathodes. Angew Chem Int Ed 49:8602–8607CrossRefGoogle Scholar
  36. 36.
    Mazumder V, Sun SH (2009) Oleylamine-mediated synthesis of Pd nanoparticles for catalytic formic acid oxidation. J Am Chem Soc 131:4588–4589CrossRefGoogle Scholar
  37. 37.
    Naohara H, Ye S, Uosaki K (2001) Thickness dependent electrochemical reactivity of epitaxially electrodeposited palladium thin layers on Au(111) and Au(100) surfaces. J Electroanal Chem 500:435–445CrossRefGoogle Scholar
  38. 38.
    Liang Y et al (2011) Co3O4 nanocrystals on graphene as a synergistic catalyst for oxygen reduction reaction. Nat Mater 10:780–786CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.University of PennsylvaniaPhiladelphiaUSA