Skip to main content

Electrocatalysts for Carbon Dioxide Reduction

  • Reference work entry
  • First Online:
Encyclopedia of Applied Electrochemistry
  • 333 Accesses

Introduction

The major scientific challenges identified with the chemical reduction of CO2 are the incredible thermodynamic stability of this molecule and the requirement to transfer multiple electrons and protons in the course of the chemical reaction. As a result, reaction pathways involving transfer of a single electron proceed through the formation of highly energetic intermediates, and these processes are thermodynamically highly unfavorable (e.g., reaction 2 below). This in turn significantly diminishes the efficiency of overall CO2 reduction and can manifest itself in, e.g., high overpotential for the electrochemical process. On the other hand, proton-coupled multielectron reactions (e.g., reactions 3–6) are considerably more favorable; however, in order to implement them catalysis has to be involved. In addition, the use of water as the reaction medium does not only allow facile proton delivery but also enables coupling of the CO2reduction half-reaction to the water oxidation...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 999.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Willner I, Maidan R, Mandler D, Durr H, Dorr G, Zengerle K (1987) Photosensitized reduction of CO2 to CH4 and H2 evolution in the presence of ruthenium and osmium colloids – strategies to design selectivity of products distribution. J Am Chem Soc 109(20):6080–6086

    CAS  Google Scholar 

  2. Vassiliev YB, Bagotzky VS, Osetrova NV, Khazova OA, Mayorova NA (1985) Electroreduction of carbon-dioxide 1. The mechanism and kinetics of electroreduction Of CO2 in aqueous-solutions on metals with high and moderate hydrogen overvoltages. J Electroanal Chem 189(2):271–294

    Google Scholar 

  3. Hori Y (2008) Electrochemical CO2 reduction on metal electrodes. Mod Aspects Electrochem 42:89–189

    CAS  Google Scholar 

  4. Schwarz HA, Creutz C, Sutin N (1985) Homogeneous catalysis of the photoreduction of water by visible-light 4. Cobalt(I) polypyridine complexes – redox and substitution kinetics and thermodynamics in the aqueous 2,2′-bipyridine and 4,4′-dimethyl-2,2′-bipyridine series studied by the pulse-radiolysis technique. Inorg Chem 24(3):433–439

    CAS  Google Scholar 

  5. Cook RL, Macduff RC, Sammells AF (1988) On the electrochemical reduction of carbon-dioxide at in situ electrodeposited copper. J Electrochem Soc 135(6):1320–1326

    CAS  Google Scholar 

  6. Gattrell M, Gupta N, Co A (2006) A review of the aqueous electrochemical reduction of CO2 to hydrocarbons at copper. J Electroanal Chem 594(1):1–19

    CAS  Google Scholar 

  7. Hara K, Kudo A, Sakata T (1995) Electrochemical reduction of carbon-dioxide under high-pressure on various electrodes in an aqueous-electrolyte. J Electroanal Chem 391(1–2):141–147

    Google Scholar 

  8. Jitaru M, Lowy DA, Toma M, Toma BC, Oniciu L (1997) Electrochemical reduction of carbon dioxide on flat metallic cathodes. J Appl Electrochem 27(8):875–889

    CAS  Google Scholar 

  9. Sammels AF, Cook RL (1993) Electrocatalysis and Novel Electrodes for High Rate CO2 reduction under Ambient Conditions. In: Sullivan BP, Krist K, Guard HE (eds) Electrochemical and electrocatalytic reduction of carbon dioxide. Elsevier, Amsterdam, p 247

    Google Scholar 

  10. Batista EA, Temperini MLA (2009) Spectroscopic evidences of the presence of hydrogenated species on the surface of copper during CO2 electroreduction at low cathodic potentials. J Electroanal Chem 629(1–2):158–163

    CAS  Google Scholar 

  11. Koga O, Matsuo T, Yamazaki H, Hori Y (1998) Infrared spectroscopic observation of intermediate species on Ni and Fe electrodes in the electrochemical reduction of CO2 and CO to hydrocarbons. Bull Chem Soc Jpn 71(2):315–320

    CAS  Google Scholar 

  12. Koga O, Matsuo T, Yamazaki H, Hori Y (1998) Infrared spectroscopic study of CO2 and CO reduction at metal electrodes. Advances in chemical conversions for mitigating carbon dioxide, Elsevier, Amsterdam, vol 114, pp 569–572

    Google Scholar 

  13. Hori Y, Murata A, Takahashi R (1989) Formation of hydrocarbons in the electrochemical reduction of carbon-dioxide at a copper electrode in aqueous-solution. J Chem Soc Faraday Trans I 85:2309–2326

    CAS  Google Scholar 

  14. Bagotzky VS, Vassiliev YB, Khazova OA (1977) Generalized scheme of chemisorption, electrooxidation and electroreduction of simple organic-compounds on platinum group metals. J Electroanal Chem 81(2):229–238

    Google Scholar 

  15. Taguchi S, Aramata A (1994) Surface-structure sensitive reduced CO2 formation on Pt single-crystal electrodes in sulfuric-acid-solution. Electrochim Acta 39(17):2533–2537

    CAS  Google Scholar 

  16. Vassiliev YB, Bagotzky VS, Osetrova NV, Mikhailova AA (1985) Electroreduction of carbon-dioxide 3. Adsorption and reduction of CO2 on platinum metals. J Electroanal Chem 189(2):311–324

    Google Scholar 

  17. Tomita Y, Hori Y (1998) Electrochemical reduction of carbon dioxide at a platinum electrode in acetonitrile-water mixtures. Advances in chemical conversions for mitigating carbon dioxide, Elsevier, Amsterdam, vol 114, pp 581–584

    Google Scholar 

  18. Adzic RR, Spasojevic MD, Despic AR (1979) Hydrogen evolution on platinum in the presence of lead, cadmium and thallium adatoms. Electrochim Acta 24(5):569–576

    CAS  Google Scholar 

  19. Benson EE, Kubiak CP, Sathrum AJ, Smieja JM (2009) Electrocatalytic and homogeneous approaches to conversion of CO2 to liquid fuels. Chem Soc Rev 38:89–99

    CAS  Google Scholar 

  20. Collin JP, Sauvage JP (1989) Electrochemical reduction of carbon-dioxide mediated by molecular catalysts. Coord Chem Rev 93(2):245–268

    CAS  Google Scholar 

  21. Morris AJ, Meyer GJ, Fujita E (2009) Molecular approaches to the photocatalytic reduction of carbon dioxide for solar fuels. Acc Chem Res 42:1983–1994

    CAS  Google Scholar 

  22. Doherty MD, Grills DC, Muckerman JT, Polyansky DE, Fujita E (2010) Toward more efficient photochemical CO2 reduction: use of scCO2 or photogenerated hydrides. Coord Chem Rev 254:2472–2482

    CAS  Google Scholar 

  23. DuBois MR, DuBois DL (2009) Development of molecular electrocatalysts for CO2 reduction and H-2 production/oxidation. Acc Chem Res 42(12):1974–1982

    Google Scholar 

  24. Beley M, Collin JP, Ruppert R, Sauvage JP (1986) Electrocatalytic reduction of carbon dioxide by nickel cyclam2+ in water: study of the factors affecting the efficiency and the selectivity of the process. J Am Chem Soc 108(24):7461–7467

    CAS  Google Scholar 

  25. Grodkowski J, Neta P, Fujita E, Mahammed A, Simkhovich L, Gross Z (2002) Reduction of cobalt and iron corroles and catalyzed reduction of CO2. J Phys Chem A 106(18):4772–4778

    CAS  Google Scholar 

  26. Ishida H, Tanaka K, Tanaka T (1987) Electrochemical CO2 reduction catalyzed by ruthenium complexes [Ru(bpy)2(CO)2]2+ and [Ru(bpy)2(CO)Cl]+. Effect of pH on the formation of CO and HCOO. Organometallics 6(1):181–186

    CAS  Google Scholar 

  27. Sullivan BP, Bolinger CM, Conrad D, Vining WJ, Meyer TJ (1985) One- and two-electron pathways in the electrocatalytic reduction of CO2 by fac-Re(bpy)(CO)3Cl (bpy = 2,2[prime or minute]-bipyridine). J Chem Soc Chem Commun 20:1414–1416

    Google Scholar 

  28. DuBois DL, Miedaner A, Haltiwanger RC (1991) Electrochemical reduction of carbon dioxide catalyzed by [Pd(triphosphine)(solvent)](BF4)2 complexes: synthetic and mechanistic studies. J Am Chem Soc 113(23):8753–8764

    CAS  Google Scholar 

  29. DuBois DL, Miedaner A (1987) Mediated electrochemical reduction of CO2. Preparation and comparison of an isoelectronic series of complexes. J Am Chem Soc 109(1):113–117

    CAS  Google Scholar 

  30. Barton EE, Rampulla DM, Bocarsly AB (2008) Selective solar-driven reduction of CO2 to methanol using a catalyzed p-GaP based photoelectrochemical cell. J Am Chem Soc 130(20):6342–6344

    CAS  Google Scholar 

  31. Ogura K, Nakayama M, Kusumoto C (1996) In situ Fourier transform infrared spectroscopic studies on a metal complex-immobilized polyaniline Prussian blue modified electrode and the application to the electroreduction of CO2. J Electrochem Soc 143(11):3606–3615

    CAS  Google Scholar 

  32. Seshadri G, Lin C, Bocarsly AB (1994) A new homogeneous electrocatalyst for the reduction of carbon-dioxide to methanol at low overpotential. J Electroanal Chem 372(1–2):145–150

    CAS  Google Scholar 

  33. Cole EB, Lakkaraju PS, Rampulla DM, Morris AJ, Abelev E, Bocarsly AB (2010) Using a one-electron shuttle for the multielectron reduction of CO2 to methanol: kinetic, mechanistic, and structural insights. J Am Chem Soc 132(33):11539–11551

    Google Scholar 

  34. Hagen J (2005) Industrial catalysis. Weinheim, Wiley-VCH, p 507

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dmitry E. Polyansky .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this entry

Cite this entry

Polyansky, D.E. (2014). Electrocatalysts for Carbon Dioxide Reduction. In: Kreysa, G., Ota, Ki., Savinell, R.F. (eds) Encyclopedia of Applied Electrochemistry. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-6996-5_398

Download citation

Publish with us

Policies and ethics