Encyclopedia of Applied Electrochemistry

2014 Edition
| Editors: Gerhard Kreysa, Ken-ichiro Ota, Robert F. Savinell

Anodic Reactions in Electrocatalysis - Oxidation of Carbon Monoxide

  • Elena Savinova
  • Antoine Bonnefont
  • Frédéric Maillard
Reference work entry
DOI: https://doi.org/10.1007/978-1-4419-6996-5_393

Introduction

CO electrooxidation is a reaction of great technological importance, which has been widely used as a prototype electrochemical reaction in fundamental electrocatalysis. In proton exchange membrane fuel cells (PEMFC) fed by hydrogen, presence of CO in the feed leads to significant voltage losses due to the strong CO adsorption and concomitant active site poisoning of Pt-based anode catalysts. In low-temperature fuel cells which utilize C1- and C2-oxygenated molecules like methanol, ethanol, formaldehyde, and formic acid as fuels, CO is formed as an intermediate which is blocking active sites and greatly impeding the anode reaction. For these applications, the use of CO-tolerant catalysts is of utmost importance. Investigation of CO electrooxidation on model single crystal and nanostructured electrodes has strongly added to the advancement of the fundamental electrocatalysis in particular in what concerns the understanding of the kinetics of electrocatalytic reactions,...

This is a preview of subscription content, log in to check access

References

  1. 1.
    Maillard F, Pronkin S, Savinova ER (2009) Influence of size on the electrocatalytic activities of supported metal nanoparticles in fuel cells related reactions. In: Vielstich W, Gasteiger HA, Yokokawa H (eds) Handbook of fuel cells – fundamentals, technology and applications. Wiley, New YorkGoogle Scholar
  2. 2.
    Koper MTM (2011) Structure sensitivity and nanoscale effects in electrocatalysis. Nanoscale 3:2054–2073Google Scholar
  3. 3.
    Beden B, Lamy C, de Tacconi NR, Arvia AJ (1990) The electrooxidation of CO – a test reaction in electrocatalysis. Electrochim Acta 35:691–704Google Scholar
  4. 4.
    Kim CS, Korzeniewski C (1997) Vibrational coupling as a probe of adsorption at different structural sites on a stepped single-crystal electrode. Anal Chem 69:2349–2353Google Scholar
  5. 5.
    Trasatti S, Petrii OA (1992) Real surface-area measurements in electrochemistry. J Electroanal Chem 327:353–376Google Scholar
  6. 6.
    Blyholder G (1964) Molecular orbital view of chemisorbed carbon monoxide. J Phys Chem 68:2772–2778Google Scholar
  7. 7.
    Anderson PW (1961) Localized magnetic states in metals. Phys Rev 124:41–53Google Scholar
  8. 8.
    Newns DM (1969) Self-consistent model of hydrogen chemisorption. Phys Rev 178:1123–1135Google Scholar
  9. 9.
    Hoffman R (1988) Rev Mod Phys 60:601–628Google Scholar
  10. 10.
    Guczi L (1991) In: Guczi L (ed) New trends in CO activation, vol 64, Studies in surface science and catalysis. Elsevier, AmsterdamGoogle Scholar
  11. 11.
    Weaver MJ (1999) Binding sites and vibrational frequencies for dilute carbon monoxide and nitric oxide adlayers in electrochemical versus ultrahigh-vacuum environments: the roles of double-layer solvation. Surf Sci 437:215–230Google Scholar
  12. 12.
    Wasileski SA, Koper MTM, Weaver MJ (2001) Field-dependent chemisorption of carbon monoxide on platinum-group (111) surfaces: relationships between binding energetics, geometries, and vibrational properties as assessed by density functional theory. J Phys Chem B 105:3518–3530Google Scholar
  13. 13.
    Longwitz SR, Schnadt J, Vestergaard EK, Vang RT, Stensgaard I, Brune H, Besenbacher F (2004) High-coverage structures of carbon monoxide adsorbed on Pt(111) studied by high-pressure scanning tunneling microscopy. J Phys Chem B108:14497–14502Google Scholar
  14. 14.
    Cuesta A, del Carmen Perez M, Rincon A, Gutierrez C (2006) Adsorption isotherm of CO on Pt(111) electrodes. ChemPhysChem 7:2346–2351Google Scholar
  15. 15.
    Villegas I, Weaver MJ (1994) Carbon-monoxide adlayer structures on platinum(111) electrodes – a synergy between in-situ scanning-tunneling-microscopy and infrared-spectroscopy. J Chem Phys 101:1648–1660Google Scholar
  16. 16.
    Markovic NM, Ross PN (2002) Surface science studies of model fuel cell electrocatalysts. Surf Sci Rep 45:117–229Google Scholar
  17. 17.
    Maillard F, Savinova E, Simonov PA, Zaikovskii VI, Stimming U (2004) Infrared spectroscopic study of CO adsorption and electrooxidation on carbon-supported Pt nanoparticles: inter-particle versus intra-particle heterogeneity. J Phys Chem B 108:17893–17904Google Scholar
  18. 18.
    Park S, Wasileski SA, Weaver MJ (2001) Electrochemical infrared characterization of carbon-supported platinum nanoparticles: a benchmark structural comparison with single-crystal electrodes and high-nuclearity carbonyl clusters. J Phys Chem B105:9719–9725Google Scholar
  19. 19.
    Dubau L, Maillard F, Chatenet M, André J, Rossinot E (2010) Nanoscale compositional changes and modification of the surface reactivity of Pt3Co/C nanoparticles during proton-exchange membrane fuel cell operation. Electrochim Acta 56:776–783Google Scholar
  20. 20.
    Stamenkovic VR, Mun BS, Mayrhofer KJJ, Ross PN, Markovic NM (2006) Effect of surface composition on electronic structure, stability, and electrocatalytic properties of Pt-transition metal alloys: Pt-skin versus Pt-skeleton surfaces. J Am Chem Soc 128:8813–8819Google Scholar
  21. 21.
    Gilman S (1964) The mechanism of electrochemical oxidation of carbon monoxide and methanol on platinum. II. The “reactant-pair” mechanism for electrochemical oxidation of carbon monoxide and methanol. J Phys Chem 68:70–80Google Scholar
  22. 22.
    Petukhov AV, Akemann W, Friedrich KA, Stimming U (1998) Kinetics of electrooxidation of a CO monolayer at the platinum/electrolyte interface. Surf Sci 404:182–186Google Scholar
  23. 23.
    García G, Koper MTM (2011) Carbon monoxide oxidation on Pt single crystal electrodes: understanding the catalysis for low temperature fuel cells. ChemPhysChem 12:2064–2072Google Scholar
  24. 24.
    Lebedeva NP, Koper MTM, Herrero E, Feliu JM, Van Santen RA (2000) CO oxidation on stepped Pt[n(111)x(111)] electrodes. J Electroanal Chem 487:37–44Google Scholar
  25. 25.
    Maillard F, Eikerling M, Cherstiouk OV, Schreier S, Savinova E, Stimming U (2004) Size effects on reactivity of Pt nanoparticles in CO monolayer oxidation: the role of surface mobility. Faraday Discuss 125:357–377Google Scholar
  26. 26.
    Maillard F, Schreier S, Hanzlik M, Savinova ER, Weinkauf S, Stimming U (2005) Influence of particle agglomeration on the catalytic activity of carbon-supported Pt nanoparticles in CO monolayer oxidation. Phys Chem Chem Phys 7:385–393Google Scholar
  27. 27.
    Koper MTM, Schmidt TJ, Markovic NM, Ross PN (2001) Potential oscillations and S-shaped polarization curve in the continuous electro-oxidation of CO on platinum single-crystal electrodes. J Phys Chem B 105:8381–8386Google Scholar
  28. 28.
    Morschl R, Bolten J, Bonnefont A, Krischer K (2008) Pattern formation during CO electrooxidation on thin Pt films studied with spatially resolved infrared absorption spectroscopy. J Phys Chem C 112:9548–9551Google Scholar
  29. 29.
    Malkhandi S, Bonnefont A, Krischer K (2009) Dynamic instabilities during the continuous electro-oxidation of CO on poly- and single crystalline Pt electrodes. Surf Sci 603:1646–1651Google Scholar
  30. 30.
    Ruvinskiy PS, Bonnefont A, Bayati M, Savinova ER (2010) Mass transport effects in CO bulk electrooxidation on Pt nanoparticles supported on vertically aligned carbon nanofilaments. Phys Chem Chem Phys 12:15207–15216Google Scholar
  31. 31.
    Kita H, Nakajima H, Hayashi K (1985) Electrochemical oxidation of CO on Au in alkaline solution. J Electroanal Chem 190:141–156Google Scholar
  32. 32.
    Rodriguez P, Garcia-Araez N, Koverga A, Frank S, Koper MTM (2010) CO Electrooxidation on gold in alkaline media: a combined electrochemical, spectroscopic, and DFT study. Langmuir 26:12425–12432Google Scholar
  33. 33.
    Roberts JL, Sawyer DT (1964) Voltammetric determination of carbon monoxide at gold electrodes. J Electroanal Chem 7:315–319Google Scholar
  34. 34.
    Rodriguez P, Koverga AA, Koper MTM (2010) Carbon monoxide as a promoter for its own oxidation on a gold electrode. Angew Chem Int Ed 49:1241–1243Google Scholar
  35. 35.
    Breiter MW (1975) Influence of chemisorbed carbon monoxide on the oxidation of molecular hydrogen at smooth platinum in sulfuric acid solution. J Electroanal Chem 65:623–634Google Scholar
  36. 36.
    Igarashi H, Fujino T, Zhu YM, Uchida H, Watanabe M (2001) CO Tolerance of Pt alloy electrocatalysts for polymer electrolyte fuel cells and the detoxification mechanism. Phys Chem Chem Phys 3:306–314Google Scholar
  37. 37.
    Maillard F, Lu GQ, Wieckowski A, Stimming U (2005) Ru-decorated Pt surfaces as model fuel cell electrocatalysts for CO electrooxidation. J Phys Chem B 109:16230–16243Google Scholar
  38. 38.
    Schmidt TJ, Jusys Z, Gasteiger HA, Behm RJ, Endruschat U, Boennemann H (2001) On the CO tolerance of novel colloidal PdAu:carbon electrocatalysts. J Electroanal Chem 501:132–140Google Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Elena Savinova
    • 1
  • Antoine Bonnefont
    • 2
  • Frédéric Maillard
    • 3
  1. 1.Institut de Chimie et Procédés pour l’Energie, l’Environnement et la SantéUMR 7515 CNRS, Université de Strasbourg-ECPMStrasbourgFrance
  2. 2.Institut de Chimie de StrasbourgCNRS-Université de StrasbourgStrasbourgFrance
  3. 3.Laboratoire d’Electrochimie et de Physico-chimie des Matériaux et des InterfacesSaint Martin d’HéresFrance