Encyclopedia of Applied Electrochemistry

2014 Edition
| Editors: Gerhard Kreysa, Ken-ichiro Ota, Robert F. Savinell

Kolbe and Related Reactions

  • István Markó
  • François Chellé
Reference work entry
DOI: https://doi.org/10.1007/978-1-4419-6996-5_369

Introduction

In 1834, while studying the conductivity of acetates, M. Faraday observed that an inflammable gas was produced at the anode [ 1]. However, being more interested in physics than in chemistry, he reported this phenomenon but did not identify the gas. Fifteen years later, in 1849, W.H. Kolbe reinvestigated this transformation [ 2]. He characterized ethane as the product formed at the anode and recognized the nature and utility of this electrochemical process. The “Kolbe” reaction, the electrochemical oxidative decarboxylation-dimerization of carboxylic acids, is a powerful method for the generation of C-C bonds under particularly mild conditions (Scheme 1).
This is a preview of subscription content, log in to check access.

References

  1. 1.
    Faraday M (1834) Siebente Reihe von Experimental-Unter-suchungen über Elektricität. Pogg Ann 33:433Google Scholar
  2. 2.
    Kolbe H (1849) Untersuchungen über die Elektrolyse organischer Verbindungen. Liebigs Ann Chem 69:257–294CrossRefGoogle Scholar
  3. 3.
    Würtz A (1855) Sur une nouvelle classe de radicaux organiques. Ann Chim Phys 44:275–313Google Scholar
  4. 4.
    Brown AC, Walker J (1891) Elektrolytische Synthese zweibasischer Säuren. Liebigs Ann Chem 261:107–128CrossRefGoogle Scholar
  5. 5.
    Weedon BCL (1960) The kolbe electrolytic synthesis In: Raphael, AR, Taylor, EC, Wynberg, H (eds) Advances in organic chemistry: methods and results. Interscience Publishers Inc, New York, 1, p. 1Google Scholar
  6. 6.
    Vijh AK, Conway BE (1967) Electrode kinetic aspects of the kolbe reaction. Chem Rev 67:623–664CrossRefGoogle Scholar
  7. 7.
    Eberson L (1967) Mechanism of the kolbe electrosynthesis. Electrochim Acta 12:1473–1478CrossRefGoogle Scholar
  8. 8.
    Brennan MPJ, Brettle R (1973) Anodic oxidation. Part XI. Carbon anodes in electrosyntheses based on carboxylate ions. J Chem Soc, Perkin Trans I: 257–261Google Scholar
  9. 9.
    Schäfer HJ (1990) Electrochemistry IV topics. Current Chem 152:91–151CrossRefGoogle Scholar
  10. 10.
    Utley J (1997) Trends in organic electrosynthesis. Chem Soc Rev 26:157–167CrossRefGoogle Scholar
  11. 11.
    Sperry JB, Wright DL (2006) The application of cathodic reductions and anodic oxidations in the synthesis of complex molecules. Chem Soc Rev 35:605–621CrossRefGoogle Scholar
  12. 12.
    Schäfer HJ (2012) Electrochemical conversion of fatty acids. Eur J Lipid Sci Technol 114:2–9CrossRefGoogle Scholar
  13. 13.
    Andrieux CP, Gonzalez F, Savéant J-M (2001) Homolytic and heterolytic radical cleavage in the kolbe reaction; electrochemical oxidation of arylmethyl carboxylate ions. J Electroanal Chem 498:171–180CrossRefGoogle Scholar
  14. 14.
    Utley JHP, Yates GB (1978) Electro-organic reactions. Part 11. Mechanism of the kolbe reaction; the stereochemistry of reaction of anodically generated cyclohex-2-enyl radicals and cations. J Chem Soc, Perkin Trans II: 395–400Google Scholar
  15. 15.
    Burke MJ, Feaster JE, Harlow RL (1991) New chiral phospholanes; synthesis, characterization, and use in asymmetric hydrogenation reactions. Tetrahedron Asymm 2:569–592CrossRefGoogle Scholar
  16. 16.
    Peterson J (1905) Reduction of oleic acid to stearic acid by electrolysis. Z Elektrochem 11:549–553CrossRefGoogle Scholar
  17. 17.
    Schäfer HJ, Kratschmer S, Weiper A, Klocke E, Plate M, Maletz R (1998) Conversion of biomass derived products by anodic activation. In: Torii S (ed) Novel trends in electroorganic synthesis.Springer, Tokyo, pp 187–190Google Scholar
  18. 18.
    Renaud RN, Champagne PJ (1975) Electrochemical oxidation of trifluoroacetic acid in an organic substrate. III. In the presence of substituted malonic acid half esters and unsaturated carboxylic acid esters. Can J Chem 53:529–534CrossRefGoogle Scholar
  19. 19.
    Kubota T, Aoyagi R, Sando H, Kawasumi M, Tanaka T (1987) Preparation of Trifluoromethylated Compounds by Anodic Oxidation of 3-Hydroxy-Trifluoromethylpropionic acid. Chem Lett: 1435–1438Google Scholar
  20. 20.
    Schäfer HJ, Pistorius R (1972) Single-step synthesis of 1, n-dicarboxylic diesters by kolbe electrolysis of oxalic and malonic half esters in the presence of olefins. Angew Chem Int Ed Engl 11:841–842CrossRefGoogle Scholar
  21. 21.
    Becking L, Schäfer HJ (1988) Pyrrolidines by intramolecular addition of kolbe radicals generated from β-allylaminoalkanoates. Tetrahedron Lett 29:2797–2800CrossRefGoogle Scholar
  22. 22.
    Becking L, Schäfer HJ (1988) Synthesis of a prostaglandin precursor by mixed kolbe electrolysis of 3-(Cyclopent-2-enyloxy)propionate. Tetrahedron Lett 29:2801–2802CrossRefGoogle Scholar
  23. 23.
    Matzeit A, Schäfer HJ, Amatore C (1995) Radical tandem cyclizations by anodic decarboxylation of carboxylic acids. Synthesis: 1432–1444Google Scholar
  24. 24.
    Lebreux F, Markó IE unpublished resultsGoogle Scholar
  25. 25.
    Lebreux F, Buzzo F, Markó IE (2008) Synthesis of five- and six-membered-ring compounds by environmentally friendly radical cyclizations using kolbe electrolysis. Synlett: 2815–2820Google Scholar
  26. 26.
    Sato N, Sekine T, Sugino K (1968) Anodic processes of acetate ion in methanol and glacial acetic acid at various anode materials. J Electrochem Soc 115:242–246CrossRefGoogle Scholar
  27. 27.
    Torii S, Tanaka H (1991) Carboxylic acids. In: Lund H, Hammerich O (eds) Organic electrochemistry. Marcel Dekker, New York, pp 499–543Google Scholar
  28. 28.
    Yoshikawa M, Kamigauchi T, Ikeda Y, Kitagawa I (1981) Chemical transformation of uronic acids leading to aminocyclitols. IV. Synthesis of hexaacetyl-streptamine from N-Acetyl-D-glucosamine by means of electrolytic decarboxylation. Chem Pharm Bull 29:2582–2586CrossRefGoogle Scholar
  29. 29.
    Renaud P, Seebach D (1986) Preparation of chiral building blocks from amino acids and peptides via electrolytic decarboxylation and TiCl4-induced aminoalkylation. Angew Chem Int Ed Engl 25:843–844CrossRefGoogle Scholar
  30. 30.
    Mori M, Kagechika K, Tohjima K, Shibasaki M (1988) New synthesis of 4-acetoxy-2-azetidinones by use of electrochemical oxidation. Tetrahedron Lett 29:1409–1412CrossRefGoogle Scholar
  31. 31.
    Bastug G, Eviolitte C, Markó IE (2012) Functionalized orthoesters as powerful building blocks for the efficient preparation of heteroaromatic bicycles. Organic Lett 14:3502–3507CrossRefGoogle Scholar
  32. 32.
    Hermeling D, Schäfer HJ (1984) 3-trimethylsilylacrylic acid as an acetylene equivalent in diels-alder reactions; olefins via anodic decarboxylation-desilylation. Angew Chem Int Ed Engl 23:233–235CrossRefGoogle Scholar
  33. 33.
    Torii S, Okamoto T, Oida T (1978) An improved synthesis of a-methylene g-Lactones by electrolysis of a-carboxy-a-phenylthiomethyl-g-butyrolactones. J Org Chem 43:2294–2296CrossRefGoogle Scholar
  34. 34.
    Michaelis R, Müller U, Schäfer HJ (1987) Anodic grob Fragmentation of bicycloalkylcarboxyl acids to specifically disubstituted cycloalkenes. Angew Chem Int Ed Engl 26:1026–1027CrossRefGoogle Scholar
  35. 35.
    Wharton PS, Hiegel GA, Coombs RV (1963) trans-5-cyclodecenone. J Org Chem 28:3217–3219CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.Universite Catholique de LouvainLouvain-la-NeuveBelgium