Skip to main content

Electrosynthesis of Polysilane

  • Reference work entry
  • First Online:
Encyclopedia of Applied Electrochemistry
  • 140 Accesses

Introduction

Polysilanes (Fig. 1) [1] have attracted considerable attention due to their usefulness as precursors for thermally stable ceramics [2, 3] or a material for microlithography [4, 5] and also due to their potentiality in preparation of new types of material showing semiconducting, photoconducting, or nonlinear optical property [68].

Electrosynthesis of Polysilane, Fig. 1
figure 5205 figure 5205

Polysilanes

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 999.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. West R (1986) The polysilane high polymers. J Organomet Chem 300(1–2):327–346

    CAS  Google Scholar 

  2. Yajima S, Hasegawa Y, Hayashi J, Iimura M (1978) Synthesis of continuous silicon carbide fiber with high tensile strength and high Young’s modulus. Part 1. Synthesis of polycarbosilane as precursor. J Mater Sci 13(12):2569–2576

    CAS  Google Scholar 

  3. Hasegawa Y, Okamura K (1985) Silicon carbide-carbon composite materials synthesized by pyrolysis of polycarbosilane. J Mater Sci Lett 4(3):356–358

    CAS  Google Scholar 

  4. Miller RD, Willson CG, Wallroff GM, Clecak N, Sooriyakumaran R, Michl J, Karatsu T, McKinley AJ, Klingensmith KA, Downing J (1989) Polysilanes: photochemistry and deep-UV lithography. Polym Eng Sci 29(13):882–886

    CAS  Google Scholar 

  5. Miller RD, Michl J (1989) Polysilane high polymers. Chem Rev 89(6):1359–1410

    CAS  Google Scholar 

  6. West R, David LD, Djurovich PI, Stearley KL, Srinivasan KSV, Yu H (1981) Phenylmethylpolysilanes: formable silane copolymers with potential semiconducting properties. J Am Chem Soc 103(24):7352–7354

    CAS  Google Scholar 

  7. Kepler RG, Zeigler JM, Harrah LA, Kurtz SR (1987) Photocarrier generation and transport in s-bonded polysilanes. Phys Rev B 35(6):2818–2822

    CAS  Google Scholar 

  8. Baumert JC, Bjorklund GC, Jundt DH, Jurich MC, Looser H, Miller RD, Rabolt J, Soorijakumaran R, Swalen JD, Twing RJ (1988) Temperature dependence of the third-order nonlinear optical susceptibilities in polysilanes and polygermanes. Appl Phys Lett 53(13):1147–1149

    CAS  Google Scholar 

  9. Matyjaszewski K, Greszta D, Hrkach JS, Kim HK (1995) Sonochemical synthesis of polysilylenes by reductive coupling of disubstituted dichlorosilanes with alkali metals. Macromolecules 28(1):59–72

    CAS  Google Scholar 

  10. Jones RD, Holder SJ (2006) High-yield controlled syntheses of polysilanes by the Wurtz-type reductive coupling reaction. Polym Int 55(7):711–718

    CAS  Google Scholar 

  11. Koe J (2008) Contemporary polysilane synthesis and functionalisation. Polym Int 58(3):255–260

    Google Scholar 

  12. Tilley TD (1993) The coordination polymerization of silanes to polysilanes by a “σ-bond metathesis” mechanism. Implications for linear chain growth. Acc Chem Res 26(1):22–29

    CAS  Google Scholar 

  13. Minato M, Matsumoto T, Ichikawa M, Ito T (2003) Dehydropolymerization of arylsilanes catalyzed by a novel silylmolybdenum complex. Chem Commun 24:2968–2969

    Google Scholar 

  14. Sanji T, Kawabata K, Sakurai H (2000) Alkoxide initiation of anionic polymerization of masked disilenes to polysilanes. J Organomet Chem 611(1–2):32–35

    CAS  Google Scholar 

  15. Sanji T, Isozaki S, Yoshida M, Sakamoto K, Sakurai H (2003) Functional transformation of poly(dialkylaminotrimethyldisilene) prepared by anionic polymerization of the masked disilenes. The preparation of a true polysilastyrene. J Organomet Chem 685(1–2):65–69

    CAS  Google Scholar 

  16. Cypryk M, Gupta Y, Matyjaszewski K (1991) Anionic ring-opening polymerization of 1,2,3,4-tetramethyl-1,2,3,4-tetraphenylcyclotetrasilane. J Am Chem Soc 113(3):1046–1047

    CAS  Google Scholar 

  17. Suzuki M, Kotani J, Gyobu S, Kaneko T, Saegusa T (1994) Synthesis of sequence-ordered polysilane by anionic ring-opening polymerization of phenylnonamethylcyclopentasilane. Macromolecules 27(8):2360–2363

    CAS  Google Scholar 

  18. Kimata Y, Suzuki H, Satoh S, Kuriyama A (1994) Synthesis of oligosilanes by electrolysis of hydrosilanes. Chem Lett 7:1163–1164

    Google Scholar 

  19. Kimata Y, Suzuki H, Satoh S, Kuriyama A (1995) Electrochemical polymerization of hydrosilane compounds. Organomet 14(5):2506–2511

    CAS  Google Scholar 

  20. Hengge E, Litscher G (1976) A new electrochemical method for the formation of silicon-silicon bonds. Angew Chem 88(12):414

    CAS  Google Scholar 

  21. Hengge E, Litscher G (1978) Electrochemical formation of di-, oligo- and polysilanes. Monatsh Chem 109(5):1217–1225

    CAS  Google Scholar 

  22. Hengge E, Firgo H (1981) An electrochemical method for the synthesis of silicon-silicon bonds. J Organomet Chem 212(2):155–161

    CAS  Google Scholar 

  23. Shono T, Kashimura S, Ishifune M, Nishida R (1990) Electroreductive formation of polysilanes. J Chem Soc Chem Commun 17:1160–1161

    Google Scholar 

  24. Kashimura S, Ishifune M, Yamashita N, Bu HB, Takebayashi M, Kitajima S, Yoshihara D, Kataoka Y, Nishida R, Kawasaki S, Murase H, Shono T (1999) Electroreductive synthesis of polysilanes, polygermanes, and related polymers with magnesium electrodes. J Org Chem 64(18):6615–6621

    CAS  Google Scholar 

  25. Umezawa M, Takeda M, Ichikawa H, Ishikawa T, Koizumi T, Nonaka T (1991) Electroreductive polymerization of mixtures of chloromonosilanes. Electrochim Acta 36(3–4):621–624

    CAS  Google Scholar 

  26. Biran C, Bordeau M, Pons P, Leger MP, Dunogues J (1990) Electrosynthesis, a convenient route to di- and polysilanes. J Organomet Chem 382(3):C17–C20

    CAS  Google Scholar 

  27. Kunai A, Kawakami T, Toyoda E, Ishikawa M (1991) Electrochemistry of organosilicon compounds. 2. Synthesis of polysilane oligomers by a copper electrode system. Organometallics 10(6):2001–2003

    CAS  Google Scholar 

  28. Okano M, Takeda K, Toriumi T, Hamano H (1998) Electrochemical synthesis of polygermanes. Electrochim Acta 44(4):659–666

    CAS  Google Scholar 

  29. Yamada K, Okano M (2006) Electrochemical synthesis of poly(cyclotetramethylenesilylene). Electrochemistry 74(8):668–671

    CAS  Google Scholar 

  30. Ishifune M, Kashimura S, Kogai Y, Fukuhara Y, Kato T, Bu HB, Yamashita N, Murai Y, Murase H, Nishida R (2000) Electroreductive synthesis of oligosilanes and polysilanes with ordered sequences. J Organomet Chem 611(1–2):26–31

    CAS  Google Scholar 

  31. Ishifune M, Kogai Y, Uchida K (2005) Effect of disilane additives on the electroreductive polymerization of organodichlorosilanes. J Macromol Sci Part A Pure and Appl Chem 42(7):921–929

    Google Scholar 

  32. Chen SM, David LD, Haller KJ, Wadsworth CL, West R (1983) Isomers of (PhMeSi)6 and (PhMeSi)5. Organometallics 2(3):409–414

    CAS  Google Scholar 

  33. Ishifune M, Sana C, Ando M, Tsuyama Y (2011) Electroreductive block copolymerization of dichlorosilanes in the presence of disilane additives. Polym Int 60(8):1208–1214

    CAS  Google Scholar 

  34. Kawabe T, Naito M, Fujiki M (2008) Multiblock polysilane copolymers: One-pot Wurtz synthesis, fluoride anion-induced block-selective scission experiments, and spectroscopic characterization. Macromolecules 41(6):1952–1960

    CAS  Google Scholar 

  35. Kashimura S, Ishifune M, Bu HB, Takebayashi M, Kitajima S, Yoshihara D, NishidaR KS, Murase H, Shono T (1997) Electroorganic chemistry. 153. Electroreductive synthesis of some functionalized polysilanes and related polymers. Tetrahedron Lett 38(26):4607–4610

    CAS  Google Scholar 

  36. Fujiki M (2003) Switching handedness in optically active polysilane. J Organomet Chem 685(1–2):15–34

    CAS  Google Scholar 

  37. Huang K, Vermeulen LA (1998) First electrochemical synthesis of network silane and silane-germane copolymers: (C6H11Si) x (PhSi) y and (C6H11Si) x (PhGe) y . Chem Commun 2:247–248

    Google Scholar 

  38. Okano M, Nakamura K, Yamada K, Hosoda N, Wakasa M (2006) An improvement electrochemical synthesis of network polysilanes. Electrochemistry 74(12):956–958

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manabu Ishifune .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this entry

Cite this entry

Ishifune, M. (2014). Electrosynthesis of Polysilane. In: Kreysa, G., Ota, Ki., Savinell, R.F. (eds) Encyclopedia of Applied Electrochemistry. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-6996-5_360

Download citation

Publish with us

Policies and ethics