Encyclopedia of Applied Electrochemistry

2014 Edition
| Editors: Gerhard Kreysa, Ken-ichiro Ota, Robert F. Savinell

Membrane Technology

  • Helmut Ullmann
  • Vladimir Vashook
  • Ulrich GuthEmail author
Reference work entry
DOI: https://doi.org/10.1007/978-1-4419-6996-5_312


Membranes could be considered as layer structures which can separate two fluids (gas or liquid) and which have different permeabilities for these fluids or their components. Depending on structure, the membranes could be classified in dense and porous ones. According to IUPAC, the porous membranes can be distinguished into micropores (pore diameter is <2 nm), mesopores (2 nm < d < 50 nm), and macropores (d > 50 nm), respectively. The dense membranes have no open porosity and are impenetrable for particles in gas molecules.

Dense membranes can be divided into ceramic membranes, metal membranes, and liquid-immobilized membranes. These include materials which allow preferential passage of hydrogen or oxygen, in the form of either ions or atoms. Liquid-immobilized membranes consist of a porous support in which a semipermeable liquid is immobilized which fills the pores completely. Interesting examples are molten salts immobilized in porous steel or ceramic supports,...

This is a preview of subscription content, log in to check access.


  1. 1.
    Bouwmeester HJM, Burggraaf AJ (1996) Dense Ceramic Membranes. In: Gellings PJ, Bouwmeester JM (eds) The CRC handbook of solid state electrochemistry. CRC Press, Boka Raton, pp 481–553Google Scholar
  2. 2.
    Nernst W (1899) On hydrogen generation (in German) Z. Elektrochemie 6:37–41Google Scholar
  3. 3.
    Steele BCH (2000) Materials for IT-SOFC stacks. 35 years R&D: the inevitability of gradualness? Solid State Ion 134:3–20Google Scholar
  4. 4.
    Alqahtany H, Eng D, Stoukides M (1993) Synthesis gas production from methane over an iron electrode in a solid electrolyte cell. J Electrochem Soc 140:1677–1681Google Scholar
  5. 5.
    Teraoka Y, Zhang H M, Furukawa S, Yamazoe M (1985) Oxygen permeation through perovskite-type oxides. Chem Lett 14:1743–1746Google Scholar
  6. 6.
    Teraoka Y, Nobunaga T, Yamazoe N (1988) Effect of cation substitution on the oxygen semipermeability of perovskite-type oxides. Chem Lett 17:503–506Google Scholar
  7. 7.
    Dyer PN, Richards RE, Russek SL (2000) Ion transport membrane technology for oxygen separation and syngas production. Solid State Ion 134:21–33Google Scholar
  8. 8.
    Wagner C (1975) Equations for transport in solid oxides and sulfides of transition metals. Prog Solid State Chem 10:3–16Google Scholar
  9. 9.
    Skinner SJ, Kilner JA (2000) Oxygen diffusion and surface exchange in La2−xSrxNiO4+δ. Solid State Ion 135:709–712Google Scholar
  10. 10.
    Huang P, Petric A (1996) Superior oxygen ion conductivity of lanthanum gallate doped with strontiom and magnesium. J Electrochem Soc 143:1644Google Scholar
  11. 11.
    Ishihara T, Honda M, Nishiguchi H, Takita Y (1997) In: Proceedings of the 5th international symposium. SOFC, Aachen, 2–5 June 1997, p 301Google Scholar
  12. 12.
    Ruiz-Trejo E, Sirman JD, Baikov Ju M, Kilner JA (1998) Oxygen ion diffusivity, surface exchange and ionic conductivity in single crystal Gadolinia doped Ceria. Solid State Ion 113–115:565–569Google Scholar
  13. 13.
    De Souza RA, Kilner JA (1998) Oxygen transport in La1−xSrxMn1−yCoyO3±δ perovskites: part I. Oxygen tracer diffusion. Solid State Ion 106:175–187Google Scholar
  14. 14.
    ten Elshoff JE, Langhorst MHR, Bouwmeester HJM (1997) Chemical diffusion and oxygen exchange of La0.6Sr0.4Co0.6Fe0.4O3−δ. Solid State Ion 99:15–22Google Scholar
  15. 15.
    Minh NQ (1993) Ceramic fuel cells. J Am Ceram Soc 76:563–588Google Scholar
  16. 16.
    Ullmann H, Trofimenko N, Tietz F, Stöver D, Ahmad-Khanlou A (2000) Correlation between thermal expansion and oxide ion transport in mixed conducting perovskite-type oxides for SOFC cathodes. Solid State Ion 138:79–90Google Scholar
  17. 17.
    Nakamura T, Petzow G, Gauckler LJ (1979) Stability of the perovskite phase LaBO3 (B = V, Cr, Mn, Fe, Co, Ni) in reducing atmosphere. I. Experimental results. Mater Res Bull 14:649–659Google Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Helmut Ullmann
    • 1
  • Vladimir Vashook
    • 1
    • 2
  • Ulrich Guth
    • 1
    • 2
    Email author
  1. 1.FB Chemie und LebensmittelchemieTechnische Universität DresdenDresdenGermany
  2. 2.Kurt-Schwabe-Institut für Mess- und Sensortechnik e.V. MeinsbergWaldheimGermany