Skip to main content

Electropermeabilization of the Cell Membrane

  • Reference work entry
  • First Online:

Introduction

The permeability of a cell membrane can be transiently increased when a micro-millisecond external electric field pulse is applied on a cell suspension [14]. Under suitable conditions depending mainly on the pulse parameters (field strength, pulse duration, number of pulses), the viability of the cell can be preserved. The resulting electropermeabilization is a powerful electrochemical tool to gain access to the cytoplasm and to introduce chosen foreign molecules or to extract metabolites [510].

If this approach is routinely used in cell and molecular biology, one should nevertheless know that very few is known about what is really occurring in the cell and its membranes at the molecular levels [1114]. Electropermeabilization is now proposed as a very efficient way for drug, oligonucleotides, antibodies, and plasmids delivery in vivo for clinical biotechnological applications [1517]. New developments for the food and environmental industries have been proposed [18]. A...

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   999.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Smith J, Jones M Jr, Houghton L et al (1999) Future of health insurance. N Engl J Med 965:325–329

    Google Scholar 

  2. Zimmermann U, Pilwat G, Riemann F (1974) Dielectric breakdown of cell membranes. Biophys J 14:881–899

    CAS  Google Scholar 

  3. Neumann E, Rosenheck K (1972) Permeability changes induced by electric impulses in vesicular membranes. J Membr Biol 10:279–290

    CAS  Google Scholar 

  4. Kinosita K Jr, Tsong TY (1977) Formation and resealing of pores of controlled sizes in human erythrocyte membrane. Nature 268:438–441

    Google Scholar 

  5. South J, Blass B (2001) The future of modern genomics. Blackwell, London

    Google Scholar 

  6. Neumann E, Sowers AE, Jordan CA (1989) Electroporation and electrofusion in cell biology. Plenum, New York

    Google Scholar 

  7. Allen MJ, Cleary SF, Sowers AE, Shillady DD (1992) Charge and field effects in biosystems – 3. Birkhaüser, Boston

    Google Scholar 

  8. Chang DC, Chassy BM, Saunders JA, Sowers AE (1992) Guide to electroporation and electrofusion. Academic, San Diego

    Google Scholar 

  9. Pakhomov AG, Miklavcic D, Markov MS (2010) Advanced electroporation techniques in biology and medicine. CRC Press, Boca Raton

    Google Scholar 

  10. Zimmermann U (1982) Electric field mediated fusion and related electrical phenomena. Biochim Biophys Acta 694:227–277

    CAS  Google Scholar 

  11. Belehradek M, Domenge C, Luboinski B, Orlowski S, Belehradek J, Mir LM (1993) Electrochemotherapy, a new antitumor treatment; First clinical phase I-II trial. Cancer 72:3694–3700

    CAS  Google Scholar 

  12. Sixou S, Teissié J (1990) Specific electropermeabilization of leucocytes in a blood sample and application to large volumes of cells. Biochim Biophys Acta 1028:154–160

    CAS  Google Scholar 

  13. Wolf H, Rols MP, Neumann E, Teissié J (1994) Control by pulse parameters of electric field mediated gene transfer in mammalian cells. Biophys J 66:524–531

    CAS  Google Scholar 

  14. Zeira M, Tozi PF, Moumeine Y, Lazarte J, Sneed L, Volsky DJ, Nicolau C (1991) Full length CD4 electroinserted in the red blood cell membrane as a long-lived inhibitor of HIV infection. Proc Natl Acad Sci U S A 88:4409–4413

    CAS  Google Scholar 

  15. Gehl J (2003) Electroporation: theory and methods, perspectives for drug delivery, gene therapy and research. Acta Physiol Scand 177:437–447

    CAS  Google Scholar 

  16. Gothelf A, Mir LM, Gehl J (2003) Electrochemotherapy: results of cancer treatment using enhanced delivery of bleomycin by electroporation. Cancer Treat Rev 29:371–387

    CAS  Google Scholar 

  17. Orlowski S, Mir LM (1993) Cell electropermeabilization: a new tool for biochemical and pharmacological studies. Biochim Biophys Acta 1154:51–63

    CAS  Google Scholar 

  18. Teissie J, Eynard N, Vernhes MC, Benichou A, Ganeva V, Galutzov B, Cabanes PA (2002) Recent biotechnological developments of electropulsation. A prospective review. Bioelectrochemistry 55:107–112

    CAS  Google Scholar 

  19. Neumann E, Kakorin S, Toensing K (1999) Fundamentals of electroporative delivery of drugs and genes. Bioelectrochem Bioenerg 48:3–16

    CAS  Google Scholar 

  20. Weaver J, Chizmadzhev Y (1996) Theory of electroporation: a review. Bioelectrochem Bioenerg 41:135–160

    CAS  Google Scholar 

  21. Lojewska Z, Farkas D, Ehrenberg B, Loew LM (1989) Analysis of the effect and membrane conductance on the amplitude and kinetics of membrane potentials induced by externally applied electric fields. Biophys J 56:121–128

    CAS  Google Scholar 

  22. Gross D, Loew LM, Webb WW (1986) Optical imaging of cell membrane potential changes induced by applied electric fields. Biophys J 51:339–348

    Google Scholar 

  23. Puc M, Corovic S, Flisar K, Petkovsek M, Nastran J, Miklavcic D (2004) Techniques of signal generation required for electropermeabilization. Survey of electropermeabilization devices. Bioelectrochemistry 64:113–124

    CAS  Google Scholar 

  24. Valic B, Golzio M, Pavlin M, Schatz A, Faurie C, Gabriel B, Teissié J, Rols MP, Miklavcic D (2003) Effect of electric field induced transmembrane potential on spheroidal cells : theory and experiments. Eur Biophys J 32:519–528

    Google Scholar 

  25. Golzio M, Mora MP, Raynaud C, Delteil C, Teissie J, Rols MP (1998) Control by osmotic pressure of voltage-induced permeabilization and gene transfer in mammalian cells. Biophys J 74:3015–3022

    CAS  Google Scholar 

  26. Kakorin S, Redeker E, Neumann E (1998) Electroporative deformation of salt filled lipid vesicles. Eur Biophys J 27:43–53

    CAS  Google Scholar 

  27. Teissié J, Tsong TY (1981) Electric field induced transient pores in phospholipid bilayer vesicles. Biochemistry 20:1548–1554

    Google Scholar 

  28. Raffy S, Teissié J (1995) Insertion of Glycophorin A, a transmembraneous protein, in lipid bilayers can be mediated by electropermeabilization. Eur J Biochem 230:722–732

    CAS  Google Scholar 

  29. Neumann E, Kakorin S (1996) Electroptics of membrane electroporation and vesicle shape deformation. Curr Opin Colloid Interface 1:790–799

    CAS  Google Scholar 

  30. Kakorin S, Neumann E (1998) Kinetics of the electroporative deformation of lipid vesicles and biological cells in an electric field. Ber Bunsenges Phys Chem 102:670–675

    CAS  Google Scholar 

  31. Pucihar G, Kotnik T, Miklavcic D, Teissié J (2008) Kinetics of transmembrane transport of small molecules into electropermeabilized cells. Biophys J 95:2837–2848

    CAS  Google Scholar 

  32. Frey W, White JA, Price RO, Blackmore PF, Joshi RP, Nuccitelli R, Beebe SJ, Schoenbach KH, Kolb JF (2006) Plasma membrane voltage changes during nanosecond pulsed electric field exposure. Biophys J 90:3608–3615

    CAS  Google Scholar 

  33. Sukhoruko VL, Mussauer H, Zimmermann U (1998) The effect of electrical deformation forces on the electropermeabilization of erythrocyte membranes in low- and high-conductivity media. J Membr Biol 163:235–245

    Google Scholar 

  34. Muller KJ, Sukhorukov VL, Zimmermann U (2001) Reversible electropermeabilization of mammalian cells by high-intensity, ultra-short pulses of submicrosecond duration. J Membr Biol 184:161–170

    CAS  Google Scholar 

  35. Gabriel B, Teissié J (1997) Direct observation in the millisecond time range of fluorescent molecule asymmetrical interaction with the electropermeabilized cell membrane. Biophys J 73:2630–2637

    CAS  Google Scholar 

  36. Rols MP, Teissie J (1990) Electropermeabilization of mammalian cells. Quantitative analysis of the phenomenon. Biophys J 58:1089–1098

    CAS  Google Scholar 

  37. Gabriel B, Teissie J (1999) Time courses of mammalian cell electropermeabilization observed by millisecond imaging of membrane property changes during the pulse. Biophys J 76:2158–2165

    CAS  Google Scholar 

  38. Paganin-Gioanni A, Bellard E, Escoffre JM, Rols MP, Teissié J, Golzio M (2011) Direct visualization at the single-cell level of siRNA electrotransfer into cancer cells. Proc Natl Acad Sci U S A 108:10443–10447

    CAS  Google Scholar 

  39. Golzio M, Teissie J, Rols MP (2002) Direct visualization at the single-cell level of electrically mediated gene delivery. Proc Natl Acad Sci U S A 99:1292–1297

    CAS  Google Scholar 

  40. Teissie J, Golzio M, Rols MP (2005) Mechanisms of cell membrane electropermeabilization: a minireview of our present (lack of) knowledge? Biochim Biophys Acta 1724:270–280

    CAS  Google Scholar 

  41. Hibino M, Shigemori M, Itoh H, Nagayama K, Kinosita K (1991) Membrane conductance of an electroporated cell analyzed by submicrosecond imaging of transmembrane potential. Biophys J 59:209–220

    CAS  Google Scholar 

  42. Hibino M, Itoh H, Kinosita K (1993) Time courses of cell electroporation as revealed by submicrosecond imaging of transmembrane potential. Biophys J 64:1789–1800

    CAS  Google Scholar 

  43. Escande-Geraud ML, Rols MP, Dupont MA, Gas N, Teissié J (1988) Reversible plasma membrane ultrastructural changes correlated with electropermeabilization in CHO cells. Biochim Biophys Acta 939:247–259

    CAS  Google Scholar 

  44. Chang DC, Reese TS (1990) Changes in membrane structure induced by electroporation as revealed by quick freezing electron microscopy. Biophys J 58:1–12

    CAS  Google Scholar 

  45. Lopez A, Rols MP, Teissié J (1988) 31P NMR analysis of membrane phospholipid organization in viable, reversibly electropermeabilized Chinese hamster ovary cells. Biochemistry 27:1222–1228

    CAS  Google Scholar 

  46. Stulen G (1981) Electric field effects on lipid membrane structure. Biochim Biophys Acta 640:621–627

    CAS  Google Scholar 

  47. Dressler V, Schwister K, Haest CWM, Deuticke B (1983) Dielectric breakdown of the erythrocyte membrane enhances transbilayer mobility of phospholipids. Biochim Biophys Acta 732:304–307

    CAS  Google Scholar 

  48. Crowley JM (1973) Electrical breakdown of bimolecular lipid membranes as an electromechanical instability. Biophys J 13:711–724

    CAS  Google Scholar 

  49. Dimitrov S, Jain RK (1984) Membrane stability. Biochim Biophys Acta 779:437–468

    CAS  Google Scholar 

  50. Sugar IP, Neumann E (1984) Stochastic model for electric field-induced membrane pores—electroporation. Biophys Chem 19:211–225

    CAS  Google Scholar 

  51. Abidor IG, Arakelyan VB, Chernomordik LV, Chizmadzhev Y, Pastushenko VF, Tarasevich MR (1979) Electric breakdown of bilayer lipid membranes. I: the main experimental facts and their qualitative discussion. Bioelectrochem Bioenerg 6:37–52

    CAS  Google Scholar 

  52. Chernomordik LV, Sukharev SI, Abidor IG, Chizmadzhev Y (1983) Breakdown of lipid bilayer membranes in an electric field. Biochim Biophys Acta 736:203–213

    CAS  Google Scholar 

  53. Chernomordik LV, Sukharev SI, Popov SV, Pastushenko VF, Sokirko AV, Abidor IG, Chizmadzhev Y (1987) The electric breakdown of cell and lipid membranes; the similarity of phenomenologies. Biochim Biophys Acta 902:360–373

    CAS  Google Scholar 

  54. Weaver JC, Powell KT, Mintzer RA, Ling H, Sloan SR (1984) The electrical capacitance of bilayer membranes: the contribution of transient aqueous pores. Bioelectrochem Bioenerg 12:393–412

    CAS  Google Scholar 

  55. Cruzeiro-Hanson L, Mouritsen OG (1988) Passive ion permeability of lipid membrane modelled via lipid domain interfacial area. Biochim Biophys Acta 944:63–72

    Google Scholar 

  56. Taupin C, Dvolaitzky SC (1975) Osmotic pressure induced pores in phospholipid vesicles. Biochemistry 14:4771–4775

    CAS  Google Scholar 

  57. Joshi RP, Hu Q, Schoenbach KH, Hjalmarson HP (2002) Improved energy model for membrane electroporation in biological cells subjected to electrical pulses. Phys Rev E65:041920-1–041920-8

    Google Scholar 

  58. Neu JC, Krassowski W (1999) Asymptotic model of electroporation. Phys Rev E 59:3471–3482

    CAS  Google Scholar 

  59. Lewis TJ (2003) A model for bilayer membrane electroporation based on resultant electromechanical stress. IEEE Trans Dielectr Electr Insul 10:754–768

    Google Scholar 

  60. Gurtovenko AA, Vattulainen I (2005) Pore formation coupled to ion transport through lipid membranes as induced by transmembrane ionic charge imbalance: atomistic molecular dynamics study. J Am Chem Soc 127:17570–17571

    CAS  Google Scholar 

  61. Tarek M (2005) Membrane electroporation: a molecular dynamics simulation. Biophys J 88:4045–4053

    CAS  Google Scholar 

  62. Tieleman DP (2004) The molecular basis of electroporation. BMC Biochem 5:10

    Google Scholar 

  63. Vernier PT, Ziegler MJ (2007) Nanosecond field alignment of head group and water dipoles in electroporating phospholipid bilayers. J Phys Chem B 111:12993–12996

    CAS  Google Scholar 

  64. Levine ZA, Vernier PT (2010) Life cycle of an electropore: field-dependent and field-independent steps in pore creation and annihilation. J Membr Biol 236:27–36

    CAS  Google Scholar 

  65. Yesylevskyy SO, Schäfer LV, Sengupta D, Marrink SJ (2010) Polarizable water model for the coarse-grained MARTINI force field. PLoS Comput Biol 6:e1000810

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Justin Teissie .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this entry

Cite this entry

Teissie, J., Golzio, M. (2014). Electropermeabilization of the Cell Membrane. In: Kreysa, G., Ota, Ki., Savinell, R.F. (eds) Encyclopedia of Applied Electrochemistry. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-6996-5_265

Download citation

Publish with us

Policies and ethics