Encyclopedia of Applied Electrochemistry

2014 Edition
| Editors: Gerhard Kreysa, Ken-ichiro Ota, Robert F. Savinell

Magnetic Resonance Spectroscopy

  • Mario Krička
  • Rudolf Holze
Reference work entry
DOI: https://doi.org/10.1007/978-1-4419-6996-5_227

Magnetic resonance spectroscopies are methods capable of detecting transitions of spin orientations of electrons or atomic nuclei between states separated energetically under the influence of an external magnetic field. Transitions involving the spin of the nucleus of an atom with a nonzero magnetic moment are studied with nuclear magnetic resonance spectroscopy (NMR), whereas transitions involving the spin of unpaired electrons in paramagnetic samples are investigated with electron spin resonance spectroscopy (ESR) (Frequently this method has been called electron paramagnetic resonance spectroscopy (EPR) because the presence of one or several unpaired electrons being a precondition for this spectroscopy is also closely related to the phenomenon of paramagnetism.) [1]. Both methods are widely employed in analytical chemistry. NMR preferably of protons and 13C-atoms and further selected atoms is presumably the most important method in analytical organic chemistry. ESR is used less...

This is a preview of subscription content, log in to check access.


  1. 1.
    Compton RG, Waller AM (1988) In: Gale RJ (ed) Spectroelectrochemistry. Plenum, New York, p 349Google Scholar
  2. 2.
    McKinney TM (1996) In: Bard AJ (ed) Electroanalytical chemistry vol. 19. Marcel Dekker, New York, p 109Google Scholar
  3. 3.
    Holze R (2003) Recent Res Dev Electrochem 6:111Google Scholar
  4. 4.
    Wieckowski A (2003) Extended abstracts of the 203rd meeting of the Electrochemical Society, Paris, 27 April–02 May, Ext Abstr 1249Google Scholar
  5. 5.
    Heinzel A (1985) PhD-dissertation, Universität OldenburgGoogle Scholar
  6. 6.
    Maki AH, Geske DH (1959) Anal Chem 31: 1450; (1959) J Chem Phys 30: 1356; (1960) 33: 825; Geske DH, Maki AH (1960) J Am Chem Soc 82: 2671; (1961) 83: 1852Google Scholar
  7. 7.
    Kaim W, Ernst S, Kasack V (1990) J Am Chem Soc 112:173Google Scholar
  8. 8.
    Ameer MAM, Ghoneam AA (1995) J Electrochem Soc 142:4082Google Scholar
  9. 9.
    Holze R (2007) Surface and interface analysis: an electrochemists toolbox. Springer-Verlag, HeidelbergGoogle Scholar
  10. 10.
    Allendoerfer RD, Martincheck GA, Bruckenstein S (1975) Anal Chem 47: 890; Allendoerfer RD (1975) J Am Chem Soc 97: 218Google Scholar
  11. 11.
    Heinzel A, Holze R, Hamann CH, Blum JK (1989) Z Phys Chem NF 160:11Google Scholar
  12. 12.
    Holze R (1989) Habilitation thesis, Universität OldenburgGoogle Scholar
  13. 13.
    Heinzel A, Holze R, Hamann CH, Blum JK (1989) Electrochim Acta 34:657Google Scholar
  14. 14.
    Hamann CH, Holze R, Köleli F (1990) DECHEMA-Monographie 121 297Google Scholar
  15. 15.
    Holze R, Köleli F, Hamann CH (1989) DECHEMA-Monographie 117 315Google Scholar
  16. 16.
    Holze R, Hamann CH (1991) Tetrahedron 47:737Google Scholar
  17. 17.
    Lippe J (1991) PhD-dissertation, Universität OldenburgGoogle Scholar
  18. 18.
    Lippe J, Holze R (1991) Synth Met 41–43:2927Google Scholar
  19. 19.
    Holze R, Lippe J (1992) Bull Electrochem 8:516Google Scholar
  20. 20.
    Dyson FJ (1955) Phys Rev 98:349Google Scholar
  21. 21.
    Wu J, Day JB, Franaszczuk K, Montez B, Oldfield E, Wieckowski A, Vuissoz P-A, Ansermet J-P (1997) J Chem Soc (trans: Faraday) 93 1017Google Scholar
  22. 22.
    Day JB, Wu J, Oldfield E, Wieckowski A (1998) In: Lorenz WJ, Plieth W (eds) Electrochemical nanotechnology. Wiley-VCH, Weinheim, p 291Google Scholar
  23. 23.
    Tong YY, Kim HS, Babu PK, Wieckowski A (2002) J Am Chem Soc 124:468Google Scholar
  24. 24.
    Tong YY, van der Klink JJ (2003) In: Wieckowski A, Savinova ER, Vayenas CG (eds) Catalysis and electrocatalysis at nanoparticle surfaces. CRC Press, Boca Raton, p 455Google Scholar
  25. 25.
    Babu PK, Tong YY, Kim HS, Wieckowski A (2001) J Electroanal Chem 524–525:157Google Scholar
  26. 26.
    McGrath P, Fojas AM, Rush B, Reimer JA, Cairns EJ (2006) Electrochemical society spring meeting 209th, Denver, May 7–11, Ext Abstr #1097Google Scholar
  27. 27.
    Wagner JB Jr (1991) In: Varma R, Selman JR (eds) Techniques for characterization of electrodes and electrochemical processes. Wiley, New York, p 3Google Scholar

General References and Further Reading: On ESR-Spectroscopy

  1. Atherton NM (1993) Principles of electron spin resonance. Ellis Horwood PTR, Prentice Hall/ChichesterGoogle Scholar
  2. Kirmse R, Stach J (1985) ESR-Spektroskopie. Akademie-Verlag, BerlinGoogle Scholar
  3. Poole CP Jr (1996) Electron spin resonance. Dover, MineolaGoogle Scholar
  4. Poole CP, Farach HA (1999) Handbook of electron spin resonance (Vol. 1). AIP, New YorkGoogle Scholar
  5. Poole CP, Farach HA (1999) Handbook of electron spin resonance (Vol. 2). Springer, New YorkGoogle Scholar
  6. Scheffler K, Stegmann HB (1970) Elektronenspinresonanz. Springer, BerlinGoogle Scholar
  7. Weil JA, Bolton JR (2007) Electron paramagnetic resonance. Wiley, HobokenGoogle Scholar
  8. Wertz JE, Bolton JR (1986) Electron spin resonance. Chapman & Hall, New YorkGoogle Scholar

General References and Further Reading: On NMR-Spectroscopy

  1. Akitt JW (1983) NMR and chemistry. Chapman & Hall, New YorkGoogle Scholar
  2. Becker ED (1980) High resolution NMR. Academic, New YorkGoogle Scholar
  3. Bovey FA (1988) Nuclear magnetic resonance spectroscopy. Academic, New YorkGoogle Scholar
  4. Harris RK (1986) Nuclear magnetic resonance spectroscopy. Longman Scientific& Technical, EssexGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.AG ElektrochemieInstitut für Chemie, Technische Universität ChemnitzChemnitzGermany