Skip to main content

iR-Drop Elimination

  • Reference work entry
  • First Online:
Encyclopedia of Applied Electrochemistry
  • 348 Accesses

Introduction

Potentiostatic setups control the potential drop between electrode and electrolyte. This requires a probe to measure the potential of the electrolyte, the so-called reference electrode. The probe tip, the sensing point, is positioned somewhere in the electrolyte. This is illustrated in Fig. 1, showing the equivalent circuit of a common electrochemical cell.

iR-Drop Elimination, Fig. 1
figure 920 figure 920

Equivalent circuit of an electrochemical cell

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 999.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Vetter KJ (1967) Electrochemical kinetics theoretical and experimental aspects. Academic, New York

    Google Scholar 

  2. Smith DE (1971) Recent developments in alternating current polarography. Crit Rev Anal Chem 2:247–343

    Google Scholar 

  3. Harrar JE, Pomernacki CL (1973) Linear and nonlinear system characteristics of controlled- potential electrolysis cells. Anal Chem 45:57–79

    CAS  Google Scholar 

  4. Macdonald DD (1977) Transient techniques in electrochemistry. Plenum, New York

    Google Scholar 

  5. Garreau D, Saveant JM (1978) Resistance compensation and faradaic instability in diffusion controlled processes. J Electroanal Chem 86:63–73

    CAS  Google Scholar 

  6. Bard AJ, Faulkner LR (1980) Electrochemical methods: fundamentals and applications. Wiley, New York

    Google Scholar 

  7. Roe DK (1984) Overcoming solution resistance with stability and grace in potentiostatic circuits. In: Kissinger PT (ed) Laboratory techniques in electroanalytical chemistry. Marcel Dekker, New York

    Google Scholar 

  8. Andrieux CP, Hapiot P, Saveant JM (1990) Fast kinetics by means of direct and indirect electrochemical techniques. Chem Rev 90:723–738. doi:10.1021/cr00103a003

    CAS  Google Scholar 

  9. Britz D (1978) iR compensation in electrochemical cells. J Electroanal Chem 88:309–352

    CAS  Google Scholar 

  10. Bewick A (1968) Analysis of the use of “IR” compensators in potentiostatic investigations. Electrochim Acta 13:825–830

    CAS  Google Scholar 

  11. Barnartt S (1961) Magnitude of IR-drop corrections in electrode polarization measurements made with a Luggin-Haber capillary. J Electrochem Soc 108:102–104

    CAS  Google Scholar 

  12. Piontelli R, Bianchi C, Bertucci U, Guerci C, Rivolta B (1954) Methods of measurement of polarization voltage II. Z Elektrochem 58:54–64

    CAS  Google Scholar 

  13. Cahan BD, Nagy Z, Genshaw MA (1972) Cell design for potentiostatic measuring system. J Electrochem Soc 119:64–69. doi:10.1149/1.2404134

    CAS  Google Scholar 

  14. Piontelli R (1955) Basis and examples of applications of new methods for measurement of overvoltages. Z Elektrochem 59:778–784

    CAS  Google Scholar 

  15. Ives DJG, Janz GJ (1961) Reference electrodes. Academic, New York

    Google Scholar 

  16. Hassel AW, Fushimi K, Seo M (1999) An agar-based silver|silver chloride reference electrode for use in micro-electrochemistry. Electrochem Comm 1:180–183. doi:10.1016/S1388-2481(99)00035-1

    CAS  Google Scholar 

  17. Kluger K, Lohrengel MM (1991) Mobility of ionic space charges in thin insulating films. Ber Bunsenges Physik Chem 95:1458–1461

    CAS  Google Scholar 

  18. Beck F, Guthke H (1969) Entwicklung neuer Zellen für elektro-organische Synthesen. Chemie Ing Techn 41:943–950. doi:10.1002/cite.330411702

    CAS  Google Scholar 

  19. Montenegro MI, Queiros MA, Daschbach JL (1991) Microelectrodes: theory and applications. Kluwer, Dordrecht. ISBN 0-7923-1229-5

    Google Scholar 

  20. Heinze J (1981) Diffusion processes at finite (micro) disk electrodes solved by digital simulation. Angew Chem 124:73–86

    CAS  Google Scholar 

  21. Wipf DO, Wightman RM (1988) Submicrosecond measurements with cyclic voltammetry. Anal Chem 60:2460–2464. doi:10.1021/ac00173a005

    CAS  Google Scholar 

  22. Bond AM, Luscombe D, Oldham KB, Zoski CG (1988) A comparison of the chronoamperometric response at inlaid and recessed disc microelectrodes. J Electroanal Chem 249:1–14

    CAS  Google Scholar 

  23. Wipf DO, Michael AC, Wightman RM (1989) Microdisk electrodes: Part II. Fast-scan cyclic voltammetry with very small electrodes. J Electroanal Chem 269:15–25

    CAS  Google Scholar 

  24. Zoski CG (1990) A survey of steady-state microelectrodes and experimental approaches to a voltammetric steady state. J Electroanal Chem 296:317–333

    CAS  Google Scholar 

  25. Nomura S, Nozaki K, Okazaki S (1991) Fabrication and evaluation of a shielded ultramicroelectrode for submicrosecond electroanalytical chemistry. Anal Chem 63:2665–2668. doi:10.1021/ac00022a022

    CAS  Google Scholar 

  26. Forster RJ (1994) Microelectrodes: new dimensions in electrochemistry. Chem Soc Rev 23:289–297. doi:10.1039/CS9942300289

    CAS  Google Scholar 

  27. Tschuncky P, Heinze J (1995) A method for the construction of ultramicroelectrodes. Anal Chem 67:4020–4023. doi:10.1021/ac00117a032

    CAS  Google Scholar 

  28. Cornut R, Lefrou C (2008) New analytical approximation of feedback approach curves with a microdisk SECM tip and irreversible kinetic reaction at the substrate. J Electroanal Chem 621:178–184. doi:10.1016/j.jelechem.2007.09.021

    CAS  Google Scholar 

  29. Robinson DL, Hermans A, Seipel AT, Wightman RM (2008) Monitoring rapid chemical communication in the brain. Chem Rev 108:2554–2584. doi:10.1021/cr068081q

    CAS  Google Scholar 

  30. Oldham KB (1987) All steady-state microelectrodes have the same “iR drop”. J Electroanal Chem 237:303–307

    CAS  Google Scholar 

  31. Bruckenstein S (1987) Ohmic potential drop at electrodes exhibiting steady-state diffusional currents. Anal Chem 59:2098–2101. doi:10.1021/ac00144a020

    CAS  Google Scholar 

  32. Lohrengel MM, Moehring A (2002) Electrochemical microcells and surface analysis. In: Schultze JW, Osaka T, Datta M (eds) Electrochemical microsystem technologies, vol 2, New trends in electrochemical technologies series. Taylor & Francis, London

    Google Scholar 

  33. Booman GL, Holbrook WB (1965) Optimum stabilization networks for potentiostats with application to a polarograph using transistor operational amplifiers. Anal Chem 37:795–802. doi:10.1021/ac60226a006

    CAS  Google Scholar 

  34. Hayes JW, Reilley CN (1965) Operational-amplifier, alternating-current polarograph with admittance recording. Anal Chem 37:1322–1325. doi:10.1021/ac60230a009

    CAS  Google Scholar 

  35. Gerischer H, Staubach KE (1957) Der elektronische Potentiostat und seine Anwendung zur Untersuchung schneller Elektrodenreaktionen. Z Elektrochem 61:789–794. doi:10.1002/bbpc.19570610705

    CAS  Google Scholar 

  36. Lauer G, Osteryoung RA (1966) Effect of uncompensated resistance on electrode kinetic and adsorption studies by chronocoulometry. Anal Chem 38:1106–1112. doi:10.1021/ac60241a002

    CAS  Google Scholar 

  37. Pilla AA, Roe RB, Herrmann CC (1969) High speed non-faradaic resistance compensation in potentiostatic techniques. J Electrochem Soc 116:1105–1112. doi:10.1149/1.2412225

    CAS  Google Scholar 

  38. Pilla AA (1971) Influence of the faradaic process on nonfaradaic resistance compensation in potentiostatic techniques. J Electrochem Soc 118:702–707. doi:10.1149/1.2408148

    CAS  Google Scholar 

  39. Wells E (1971) Question of instrumental artifact in linear sweep voltammetry with positive feedback ohmic drop compensation. Anal Chem 43:87–92. doi:10.1021/ac60296a010

    CAS  Google Scholar 

  40. Amatore C, Lefrou C, Pflüger F (1989) On-line compensation of ohmic drop in submicrosecond time resolved voltammetry at ultramicroelectrodes. J Electroanal Chem 270:43–59. doi:10.1016/0022-0728(89)85027-2

    CAS  Google Scholar 

  41. Brown ER, McCord TG, Smith DE, DeFord DD (1966) Some investigations on instrumental compensation of nonfaradaic effects in voltammetric techniques. Anal Chem 38:1119–1129. doi:10.1021/ac60241a004

    CAS  Google Scholar 

  42. Brown ER, Smith DE, Booman GL (1968) Operational amplifier potentiostats employing positive feedback for IR compensation I Theoretical analysis of stability and bandpass characteristics. Anal Chem 40:1411–1423. doi:10.1021/ac60266a024

    CAS  Google Scholar 

  43. Brown ER, Hung HL, McCord TG, Smith DE, Booman GL (1968) Operational amplifier potentiostats employing positive feedback for IR compensation II Application to ac polarography. Anal Chem 40:1424–1432. doi:10.1021/ac60266a025

    CAS  Google Scholar 

  44. Sarma NS, Sankar L, Krishnan A, Rajagopalan SR (1973) IR compensation in potentiostat. J Electroanal Chem 41:503–504. doi:10.1016/S0022-0728(73)80427-9

    CAS  Google Scholar 

  45. Britz D (1980) 100 % ir compensation by damped positive feedback. Electrochim Acta 25:1449–1452. doi:10.1016/0013-4686(80)87160-X

    CAS  Google Scholar 

  46. Meyer JJ, Poupard D, Dubois JE (1982) Potentiostat with a positive feedback IR compensation and a high sensitivity current follower indicator circuit for direct determination of high second-order rate constants. Anal Chem 54:207–212. doi:10.1021/ac00239a014

    CAS  Google Scholar 

  47. He P, Faulkner LR (1986) Intelligent, automatic compensation of solution resistance. Anal Chem 58:517–523. doi:10.1021/ac00294a004

    CAS  Google Scholar 

  48. Gabrielli C, Keddam M (1974) Progres recents dans la mesure des impedances electrochimiques en regime sinusoidal. Electrochim Acta 19:355–362. doi:10.1016/0013-4686(74)87009-X

    CAS  Google Scholar 

  49. Lamy C, Herrmann CC (1975) A new method for ohmic-drop compensation in potentiostatic circuits: stability and bandpass analysis, including the effect of faradaic impedance. J Electroanal Chem 59:113–135

    CAS  Google Scholar 

  50. Schultze JW, Lohrengel MM (1978) Ageing effects in monomolecular oxide layers on gold. Ber Bunsenges Physik Chem 80:552–556

    Google Scholar 

  51. Wightman RM, Wipf DO (1990) High-speed cyclic voltammetry. Acc Chem Res 23:64–70. doi:10.1021/ar00171a002

    CAS  Google Scholar 

  52. Amatore C, Lefrou C (1992) New concept for a potentiostat for on-line ohmic drop compensation in cyclic voltammetry above 300 kV s − 1. J Electroanal Chem 324:33–58. doi:10.1016/0022-0728(92)80034-2

    CAS  Google Scholar 

  53. Whitson PE, VandenBorn HW, Evans DH (1973) Acquisition and analysis of cyclic voltammetric data. Anal Chem 45:1298–1306. doi:10.1021/ac60330a016

    CAS  Google Scholar 

  54. Yarnitzky C, Klein N (1975) Dynamic compensation of the overall and uncompensated cell resistance in a two- or three-electrode system. Transient techniques. Anal Chem 47:880–884. doi:10.1021/ac60356a030

    CAS  Google Scholar 

  55. Macdonald JR (1987) Impedance spectroscopy. Wiley, New York

    Google Scholar 

  56. Devay J, Lengyel B, Meszaros L (1973) Method and apparatus for the automatic compensation of the ohmic potential drop. Zash Met 9:276–281

    CAS  Google Scholar 

  57. Yarnitzky C, Friedman Y (1975) Dynamic compensation of the overall and uncompensated cell resistance in a two- or three-electrode system. Steady state techniques. Anal Chem 47:876–880. doi:10.1021/ac60356a050

    CAS  Google Scholar 

  58. Bezman R (1972) Sampled-data approach to the reduction of uncompensated resistance effects in potentiostatic experiments. Anal Chem 44:1781–1785. doi:10.1021/ac60319a002

    CAS  Google Scholar 

  59. Mclntyre JDE, Peck WF (1970) An interrupter technique for measuring the uncompensated resistance of electrode reactions under potentiostatic control. J Electrochem Soc 117:747–751. doi:10.1149/1.2407622

    Google Scholar 

  60. Williams LFG, Taylor RJ (1980) iR correction Part I A computerised interrupt method. J Electroanal Chem 108:293–303. doi:10.1016/S0022-0728(80)80338-X

    CAS  Google Scholar 

  61. Britz D, Brocke WA (1975) Elimination of iR-drop in electrochemical cells by the use of a current-interruption potentiostat. J Electroanal Chem 58:301–311. doi:10.1016/S0022-0728(75)80088-X

    CAS  Google Scholar 

  62. Amatore C, Maisonhaute E, Simonneau G (2000) Ohmic drop compensation in cyclic voltammetry at scan rates in the megavolt per second range: access to nanometric diffusion layers via transient electrochemistry. J Electroanal Chem 486:141–155. doi:10.1016/S0022-0728(00)00131-5

    CAS  Google Scholar 

  63. Wipf DO (1996) Ohmic drop compensation in voltammetry: iterative correction of the applied potential. Anal Chem 68:1871–1876. doi:10.1021/ac951209b

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manuel Lohrengel .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this entry

Cite this entry

Lohrengel, M. (2014). iR-Drop Elimination. In: Kreysa, G., Ota, Ki., Savinell, R.F. (eds) Encyclopedia of Applied Electrochemistry. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-6996-5_226

Download citation

Publish with us

Policies and ethics