Encyclopedia of Applied Electrochemistry

2014 Edition
| Editors: Gerhard Kreysa, Ken-ichiro Ota, Robert F. Savinell

iR-Drop Elimination

  • Manuel LohrengelEmail author
Reference work entry
DOI: https://doi.org/10.1007/978-1-4419-6996-5_226


Potentiostatic setups control the potential drop between electrode and electrolyte. This requires a probe to measure the potential of the electrolyte, the so-called reference electrode. The probe tip, the sensing point, is positioned somewhere in the electrolyte. This is illustrated in Fig. 1, showing the equivalent circuit of a common electrochemical cell.
This is a preview of subscription content, log in to check access.


  1. 1.
    Vetter KJ (1967) Electrochemical kinetics theoretical and experimental aspects. Academic, New YorkGoogle Scholar
  2. 2.
    Smith DE (1971) Recent developments in alternating current polarography. Crit Rev Anal Chem 2:247–343Google Scholar
  3. 3.
    Harrar JE, Pomernacki CL (1973) Linear and nonlinear system characteristics of controlled- potential electrolysis cells. Anal Chem 45:57–79Google Scholar
  4. 4.
    Macdonald DD (1977) Transient techniques in electrochemistry. Plenum, New YorkGoogle Scholar
  5. 5.
    Garreau D, Saveant JM (1978) Resistance compensation and faradaic instability in diffusion controlled processes. J Electroanal Chem 86:63–73Google Scholar
  6. 6.
    Bard AJ, Faulkner LR (1980) Electrochemical methods: fundamentals and applications. Wiley, New YorkGoogle Scholar
  7. 7.
    Roe DK (1984) Overcoming solution resistance with stability and grace in potentiostatic circuits. In: Kissinger PT (ed) Laboratory techniques in electroanalytical chemistry. Marcel Dekker, New YorkGoogle Scholar
  8. 8.
    Andrieux CP, Hapiot P, Saveant JM (1990) Fast kinetics by means of direct and indirect electrochemical techniques. Chem Rev 90:723–738. doi:10.1021/cr00103a003Google Scholar
  9. 9.
    Britz D (1978) iR compensation in electrochemical cells. J Electroanal Chem 88:309–352Google Scholar
  10. 10.
    Bewick A (1968) Analysis of the use of “IR” compensators in potentiostatic investigations. Electrochim Acta 13:825–830Google Scholar
  11. 11.
    Barnartt S (1961) Magnitude of IR-drop corrections in electrode polarization measurements made with a Luggin-Haber capillary. J Electrochem Soc 108:102–104Google Scholar
  12. 12.
    Piontelli R, Bianchi C, Bertucci U, Guerci C, Rivolta B (1954) Methods of measurement of polarization voltage II. Z Elektrochem 58:54–64Google Scholar
  13. 13.
    Cahan BD, Nagy Z, Genshaw MA (1972) Cell design for potentiostatic measuring system. J Electrochem Soc 119:64–69. doi:10.1149/1.2404134Google Scholar
  14. 14.
    Piontelli R (1955) Basis and examples of applications of new methods for measurement of overvoltages. Z Elektrochem 59:778–784Google Scholar
  15. 15.
    Ives DJG, Janz GJ (1961) Reference electrodes. Academic, New YorkGoogle Scholar
  16. 16.
    Hassel AW, Fushimi K, Seo M (1999) An agar-based silver|silver chloride reference electrode for use in micro-electrochemistry. Electrochem Comm 1:180–183. doi:10.1016/S1388-2481(99)00035-1Google Scholar
  17. 17.
    Kluger K, Lohrengel MM (1991) Mobility of ionic space charges in thin insulating films. Ber Bunsenges Physik Chem 95:1458–1461Google Scholar
  18. 18.
    Beck F, Guthke H (1969) Entwicklung neuer Zellen für elektro-organische Synthesen. Chemie Ing Techn 41:943–950. doi:10.1002/cite.330411702Google Scholar
  19. 19.
    Montenegro MI, Queiros MA, Daschbach JL (1991) Microelectrodes: theory and applications. Kluwer, Dordrecht. ISBN 0-7923-1229-5Google Scholar
  20. 20.
    Heinze J (1981) Diffusion processes at finite (micro) disk electrodes solved by digital simulation. Angew Chem 124:73–86Google Scholar
  21. 21.
    Wipf DO, Wightman RM (1988) Submicrosecond measurements with cyclic voltammetry. Anal Chem 60:2460–2464. doi:10.1021/ac00173a005Google Scholar
  22. 22.
    Bond AM, Luscombe D, Oldham KB, Zoski CG (1988) A comparison of the chronoamperometric response at inlaid and recessed disc microelectrodes. J Electroanal Chem 249:1–14Google Scholar
  23. 23.
    Wipf DO, Michael AC, Wightman RM (1989) Microdisk electrodes: Part II. Fast-scan cyclic voltammetry with very small electrodes. J Electroanal Chem 269:15–25Google Scholar
  24. 24.
    Zoski CG (1990) A survey of steady-state microelectrodes and experimental approaches to a voltammetric steady state. J Electroanal Chem 296:317–333Google Scholar
  25. 25.
    Nomura S, Nozaki K, Okazaki S (1991) Fabrication and evaluation of a shielded ultramicroelectrode for submicrosecond electroanalytical chemistry. Anal Chem 63:2665–2668. doi:10.1021/ac00022a022Google Scholar
  26. 26.
    Forster RJ (1994) Microelectrodes: new dimensions in electrochemistry. Chem Soc Rev 23:289–297. doi:10.1039/CS9942300289Google Scholar
  27. 27.
    Tschuncky P, Heinze J (1995) A method for the construction of ultramicroelectrodes. Anal Chem 67:4020–4023. doi:10.1021/ac00117a032Google Scholar
  28. 28.
    Cornut R, Lefrou C (2008) New analytical approximation of feedback approach curves with a microdisk SECM tip and irreversible kinetic reaction at the substrate. J Electroanal Chem 621:178–184. doi:10.1016/j.jelechem.2007.09.021Google Scholar
  29. 29.
    Robinson DL, Hermans A, Seipel AT, Wightman RM (2008) Monitoring rapid chemical communication in the brain. Chem Rev 108:2554–2584. doi:10.1021/cr068081qGoogle Scholar
  30. 30.
    Oldham KB (1987) All steady-state microelectrodes have the same “iR drop”. J Electroanal Chem 237:303–307Google Scholar
  31. 31.
    Bruckenstein S (1987) Ohmic potential drop at electrodes exhibiting steady-state diffusional currents. Anal Chem 59:2098–2101. doi:10.1021/ac00144a020Google Scholar
  32. 32.
    Lohrengel MM, Moehring A (2002) Electrochemical microcells and surface analysis. In: Schultze JW, Osaka T, Datta M (eds) Electrochemical microsystem technologies, vol 2, New trends in electrochemical technologies series. Taylor & Francis, LondonGoogle Scholar
  33. 33.
    Booman GL, Holbrook WB (1965) Optimum stabilization networks for potentiostats with application to a polarograph using transistor operational amplifiers. Anal Chem 37:795–802. doi:10.1021/ac60226a006Google Scholar
  34. 34.
    Hayes JW, Reilley CN (1965) Operational-amplifier, alternating-current polarograph with admittance recording. Anal Chem 37:1322–1325. doi:10.1021/ac60230a009Google Scholar
  35. 35.
    Gerischer H, Staubach KE (1957) Der elektronische Potentiostat und seine Anwendung zur Untersuchung schneller Elektrodenreaktionen. Z Elektrochem 61:789–794. doi:10.1002/bbpc.19570610705Google Scholar
  36. 36.
    Lauer G, Osteryoung RA (1966) Effect of uncompensated resistance on electrode kinetic and adsorption studies by chronocoulometry. Anal Chem 38:1106–1112. doi:10.1021/ac60241a002Google Scholar
  37. 37.
    Pilla AA, Roe RB, Herrmann CC (1969) High speed non-faradaic resistance compensation in potentiostatic techniques. J Electrochem Soc 116:1105–1112. doi:10.1149/1.2412225Google Scholar
  38. 38.
    Pilla AA (1971) Influence of the faradaic process on nonfaradaic resistance compensation in potentiostatic techniques. J Electrochem Soc 118:702–707. doi:10.1149/1.2408148Google Scholar
  39. 39.
    Wells E (1971) Question of instrumental artifact in linear sweep voltammetry with positive feedback ohmic drop compensation. Anal Chem 43:87–92. doi:10.1021/ac60296a010Google Scholar
  40. 40.
    Amatore C, Lefrou C, Pflüger F (1989) On-line compensation of ohmic drop in submicrosecond time resolved voltammetry at ultramicroelectrodes. J Electroanal Chem 270:43–59. doi:10.1016/0022-0728(89)85027-2Google Scholar
  41. 41.
    Brown ER, McCord TG, Smith DE, DeFord DD (1966) Some investigations on instrumental compensation of nonfaradaic effects in voltammetric techniques. Anal Chem 38:1119–1129. doi:10.1021/ac60241a004Google Scholar
  42. 42.
    Brown ER, Smith DE, Booman GL (1968) Operational amplifier potentiostats employing positive feedback for IR compensation I Theoretical analysis of stability and bandpass characteristics. Anal Chem 40:1411–1423. doi:10.1021/ac60266a024Google Scholar
  43. 43.
    Brown ER, Hung HL, McCord TG, Smith DE, Booman GL (1968) Operational amplifier potentiostats employing positive feedback for IR compensation II Application to ac polarography. Anal Chem 40:1424–1432. doi:10.1021/ac60266a025Google Scholar
  44. 44.
    Sarma NS, Sankar L, Krishnan A, Rajagopalan SR (1973) IR compensation in potentiostat. J Electroanal Chem 41:503–504. doi:10.1016/S0022-0728(73)80427-9Google Scholar
  45. 45.
    Britz D (1980) 100 % ir compensation by damped positive feedback. Electrochim Acta 25:1449–1452. doi:10.1016/0013-4686(80)87160-XGoogle Scholar
  46. 46.
    Meyer JJ, Poupard D, Dubois JE (1982) Potentiostat with a positive feedback IR compensation and a high sensitivity current follower indicator circuit for direct determination of high second-order rate constants. Anal Chem 54:207–212. doi:10.1021/ac00239a014Google Scholar
  47. 47.
    He P, Faulkner LR (1986) Intelligent, automatic compensation of solution resistance. Anal Chem 58:517–523. doi:10.1021/ac00294a004Google Scholar
  48. 48.
    Gabrielli C, Keddam M (1974) Progres recents dans la mesure des impedances electrochimiques en regime sinusoidal. Electrochim Acta 19:355–362. doi:10.1016/0013-4686(74)87009-XGoogle Scholar
  49. 49.
    Lamy C, Herrmann CC (1975) A new method for ohmic-drop compensation in potentiostatic circuits: stability and bandpass analysis, including the effect of faradaic impedance. J Electroanal Chem 59:113–135Google Scholar
  50. 50.
    Schultze JW, Lohrengel MM (1978) Ageing effects in monomolecular oxide layers on gold. Ber Bunsenges Physik Chem 80:552–556Google Scholar
  51. 51.
    Wightman RM, Wipf DO (1990) High-speed cyclic voltammetry. Acc Chem Res 23:64–70. doi:10.1021/ar00171a002Google Scholar
  52. 52.
    Amatore C, Lefrou C (1992) New concept for a potentiostat for on-line ohmic drop compensation in cyclic voltammetry above 300 kV s − 1. J Electroanal Chem 324:33–58. doi:10.1016/0022-0728(92)80034-2Google Scholar
  53. 53.
    Whitson PE, VandenBorn HW, Evans DH (1973) Acquisition and analysis of cyclic voltammetric data. Anal Chem 45:1298–1306. doi:10.1021/ac60330a016Google Scholar
  54. 54.
    Yarnitzky C, Klein N (1975) Dynamic compensation of the overall and uncompensated cell resistance in a two- or three-electrode system. Transient techniques. Anal Chem 47:880–884. doi:10.1021/ac60356a030Google Scholar
  55. 55.
    Macdonald JR (1987) Impedance spectroscopy. Wiley, New YorkGoogle Scholar
  56. 56.
    Devay J, Lengyel B, Meszaros L (1973) Method and apparatus for the automatic compensation of the ohmic potential drop. Zash Met 9:276–281Google Scholar
  57. 57.
    Yarnitzky C, Friedman Y (1975) Dynamic compensation of the overall and uncompensated cell resistance in a two- or three-electrode system. Steady state techniques. Anal Chem 47:876–880. doi:10.1021/ac60356a050Google Scholar
  58. 58.
    Bezman R (1972) Sampled-data approach to the reduction of uncompensated resistance effects in potentiostatic experiments. Anal Chem 44:1781–1785. doi:10.1021/ac60319a002Google Scholar
  59. 59.
    Mclntyre JDE, Peck WF (1970) An interrupter technique for measuring the uncompensated resistance of electrode reactions under potentiostatic control. J Electrochem Soc 117:747–751. doi:10.1149/1.2407622Google Scholar
  60. 60.
    Williams LFG, Taylor RJ (1980) iR correction Part I A computerised interrupt method. J Electroanal Chem 108:293–303. doi:10.1016/S0022-0728(80)80338-XGoogle Scholar
  61. 61.
    Britz D, Brocke WA (1975) Elimination of iR-drop in electrochemical cells by the use of a current-interruption potentiostat. J Electroanal Chem 58:301–311. doi:10.1016/S0022-0728(75)80088-XGoogle Scholar
  62. 62.
    Amatore C, Maisonhaute E, Simonneau G (2000) Ohmic drop compensation in cyclic voltammetry at scan rates in the megavolt per second range: access to nanometric diffusion layers via transient electrochemistry. J Electroanal Chem 486:141–155. doi:10.1016/S0022-0728(00)00131-5Google Scholar
  63. 63.
    Wipf DO (1996) Ohmic drop compensation in voltammetry: iterative correction of the applied potential. Anal Chem 68:1871–1876. doi:10.1021/ac951209bGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.University of DüsseldorfDüsseldorfGermany