Encyclopedia of Applied Electrochemistry

2014 Edition
| Editors: Gerhard Kreysa, Ken-ichiro Ota, Robert F. Savinell

Amperometry

Reference work entry
DOI: https://doi.org/10.1007/978-1-4419-6996-5_216

Introduction

Definition

The term “amperometry” describes an electroanalytical technique which is based on a constant polarization voltage ranging within the plateau of the diffusion limited current [ 1, 2] according to Fig. 1. According to the comparison given by Delehay et al. [ 3], amperometry can be distinguished easily from voltammetry by the quantity being controlled (electrode potential E and concentration c, respectively) and the quantity being measured (electrode current I = f( c) and I = f( E), respectively). The electrode potential E of an amperometric measuring electrode has to be fixed within the diffusion limited current plateau in the voltammogram I = f( E).
This is a preview of subscription content, log in to check access.

References

  1. 1.
    Oehme F (1991) Liquid electrolyte sensors: potentiometry, amperometry and conductometry. In: Göpel W, Hesse J, Zemel JN (eds) Sensors-a comprehensive survey, vol 2. VCH Verlagsgesellschaft, Weinheim, p 288Google Scholar
  2. 2.
    Fabry P, Siebert E (1997) Electrochemical sensors. In: Gellings PJ, Bouwmeester HJM (eds) The CRC handbook of solid state electrochemistry. CRC Press, New York, p 354Google Scholar
  3. 3.
    Delahay P, Charlot G, Laitinen HA (1960) Classification and nomenclature of electroanalytical methods. Anal Chem 32:103A–108AGoogle Scholar
  4. 4.
    Rideal S, Evans UR (1913) An electrochemical indicator for oxidising agents. J Soc Public Anal 38:353–363Google Scholar
  5. 5.
    Shekhar H, Chathapuram V, Hyun SH, Hong S, Cho HJ (2003) A disposable microsensor for continuous monitoring of free chlorine in water. IEEE Sens 1:67–70Google Scholar
  6. 6.
    Clark LC (1956) Electrochemical device for chemical analysis. US Patent 2 913 386Google Scholar
  7. 7.
    Tödt F (1958) Elektrochemische Sauerstoffmessung. de Gruyter, BerlinGoogle Scholar
  8. 8.
    Schwabe K, Bär J, Steinhauer H (1965) Zur Systematik der elektrochemischen Analysenmethoden und amperometrische Verfahren zur Betriebskontrolle. Chem Ing Tech 37:483–492Google Scholar
  9. 9.
    Oswin H, Blurton K (1970) Electrochemical detection cell. US Patent 3 776 832Google Scholar
  10. 10.
    Bulliere C (1966) Diplome d’Etudes Superieures, GrenobleGoogle Scholar
  11. 11.
    Oehme F, Ertl S (1979) Industrielle Amperometrie: Messung von Diffusionsströmen an starren Elektroden als Mittel zur Konzentrationsbestimmung. Chem Tech 8:95–100Google Scholar
  12. 12.
    Heineman WR, Kissinger PT (1984) Laboratory techniques in electroanalytical chemistry. Deeker, New YorkGoogle Scholar
  13. 13.
    Deslouis C, Gil O, Tribollet B (1990) Frequency response of electrochemical sensors to hydrodynamic fluctuations. J Fluid Mech 215:85–100Google Scholar
  14. 14.
    Hitchman ML (1978) Measurement of dissolved oxygen. Wiley, New YorkGoogle Scholar
  15. 15.
    Holze R (1998) Leitfaden der Elektrochemie. Teubner, Stuttgart/LeipzigGoogle Scholar
  16. 16.
    Linek V, Benes P, Sinkule J, Vacek V (1988) Measurement of oxygen by membrane-covered probes: guidelines for applications in chemical and biochemical engineering. Ellis Horwood, ChichesterGoogle Scholar
  17. 17.
    Schmalzried H (1995) Chemical kinetics of solids. Weinheim, VCH, p 368Google Scholar
  18. 18.
    Kleitz M, Siebert E, Fabry P, Fouletier J (1991) Solid-state electrochemical sensors. In: Göpel W, Hesse J, Zemel JN (eds) Sensors – a comprehensive survey, vol 2. Weinheim, VCH, p 415Google Scholar
  19. 19.
    Usui T, Asada A, Nakazawa M, Osanai H (1989) Gas polarographic oxygen sensor using an oxygen/zirconia electrolyte. J Electrochem Soc 136:534–542. doi:10.1149/1.2096676Google Scholar
  20. 20.
    Liaw BY, Weppner W (1990) Low temperature limiting-current oxygen sensors using tetragonal zirconia as solid electrolytes. Solid State Ion 40(41):428–432Google Scholar
  21. 21.
    Saji K (1987) Characteristics of limiting current-type oxygen sensor. J Electrochem Soc 134:2431–2435Google Scholar
  22. 22.
    Draft Document 660/25: Expression of performance of electrochemical analyzers. Part IV: dissolved oxygen in water utilizing membrane-covered amperometric aensors; International Electrotechnical Commission (IEC), Rue de Varembe, CH-1211 Genf 20, CHGoogle Scholar
  23. 23.
    Oehme F, Schuler P (1983) Gelöst-Sauerstoff-Messung. Hüthig, Heidelberg, p 130Google Scholar
  24. 24.
    Mancy KH, Okun DA, Reilley CN (1962) A galvanic cell oxygen analyzer. J Electroanal Chem 4:65–92Google Scholar
  25. 25.
    Guth U, Vonau W, Zosel J (2009) Recent developments in electrochemical sensor application and technology – a review. Meas Sci Technol 20, pp 14Google Scholar
  26. 26.
    Mackereth FJH (1964) An improved galvanic cell for determination of oxygen concentrations in fluids. J Sci Instr 41:38–41. doi:10.1088/0950-7671/41/1/311Google Scholar
  27. 27.
    Mackereth FJH (1962) Electrolytic oxygen sensor. US 3322662Google Scholar
  28. 28.
    Heitz E, Kreysa G (1986) Principles of electrochemical engineering. VCH, Weinheim/New York, p 108Google Scholar
  29. 29.
    Züllig H (1977) Gas-Wasser-Fach Wasser/Abwasser 118:227–234Google Scholar
  30. 30.
    Hughes S, Johnson DC (1981) Amperometric detection of simple carbohydrates at platinum electrodes in alkaline solutions by application of a triple-pulse potential waveform. Anal Chim Acta 132:11–22Google Scholar
  31. 31.
    Havas J (1985) Ion- and molecule-selective electrodes in biological systems. Springer, BerlinGoogle Scholar
  32. 32.
    Clark LC (1987) In: Turner APF, Karube J, Wilson GS (eds) Biosensors. Oxford University Press, OxfordGoogle Scholar
  33. 33.
    Stetter JR, Li J (2008) Amperometric gas sensors – a review. Chem Rev 108:352–366 l.c. [1]:p 306Google Scholar
  34. 34.
    Oehme F (1991) Liquid electrolyte sensors: potentiometry, amperometry and conductometry. In: Göpel W, Hesse J, Zemel JN (eds) Sensors-a comprehensive survey, vol 2. VCH Verlagsgesellschaft, Weinheim, p 306Google Scholar
  35. 35.
    Vonau W, Zosel J, Decker M, Gerlach F (2012) The impact of thick film technology on the development of electrochemical sensors. In: Panzini MI (ed) Thick films: properties, technology and applications. Nova Science, New York, p 177Google Scholar
  36. 36.
    Saji K, Takahashi H, Kondo H, Takeuchi T, Igarashi I (1984) Proceedings of 4th sensor symposium, IEE of Japan, pp 147–151Google Scholar
  37. 37.
    Schmidt-Zhang P, Sandow KP, Adolf F, Göpel W, Guth U (2000) A novel thick film sensor for simultaneous O2 and NO monitoring in exhaust gases. Sens Actuators B 70:25–29Google Scholar
  38. 38.
    Peng Z, Liu M, Balko E (2001) A new type of amperometric oxygen sensor based on a mixed-conducting composite membrane. Sens Actuators B 72:35–40Google Scholar
  39. 39.
    Ullmann H (1993) Keramische Gassensoren: Grundlagen – Aufbau – Anwendung. Akademieverlag, BerlinGoogle Scholar
  40. 40.
    Katahira K, Matsumoto H, Iwahara H, Koide K, Iwamoto T (2001) A solid electrolyte hydrogen sensor with an electrochemically-supplied hydrogen standard. Sens Actuators B 73:130–134Google Scholar
  41. 41.
    Ono M, Shimanoe K, Miura N, Yamazoe N (2001) Reaction analysis on sensing electrode of amperometric NO2 sensor based on sodium ion conductor by using chronopotentiometry. Sens Actuators B 77:78–83Google Scholar
  42. 42.
    Somov SI, Reinhardt G, Guth U, Göpel W (2000) Multi-electrode zirconia electrolyte amperometric sensors. Solid State Ion 136–137:543–547Google Scholar
  43. 43.
    Coillard V, Debéda H, Lucat C, Ménil F (2001) Nitrogen monoxide detection with a planar spinel coated amperometric sensor. Sens Actuators B 78:113–118Google Scholar
  44. 44.
    Schmidt-Zhang P, Guth U (2004) A planar thick film sensor for hydrocarbon monitoring in exhaust gases. Sens Actuators B 99:258–263Google Scholar
  45. 45.
    Schmidt-Zhang P, Zhang WF, Gerlach F, Ahlborn K, Guth U (2005) Electrochemical investigations on multi-metallic electrodes for amperometric NO gas sensors. Sens Actuators B 108:797–802Google Scholar
  46. 46.
    Dzyadevych SV, Arkhypova VN, Soldatkin AP, El’skaya AV, Martelet C, Jaffrezic-Renault N (2008) Amperometric enzyme biosensors: past, present and future. IRBM 29:171–180Google Scholar
  47. 47.
    Chin CD, Linder V, Sia SK (2007) Lab-on-a-chip devices for global health: past studies and future opportunities. Lab Chip 7:41–57Google Scholar
  48. 48.
    Tuchtenhagen D, Jung G (2006) Device for determining the characteristics of a gas. WO Patent 2006/005332 A3Google Scholar
  49. 49.
    Yang YL, Chuang MC, Lou SL, Wang J (2010) Thick-film textile-based amperometric sensors and biosensors. Analyst 135:1230–1234Google Scholar
  50. 50.
    Ewing AG, Chen TK, Chen G (1995) Voltammetric and amperometric probes for single-cell analysis. Neuromethods 27:269–304Google Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.Kurt-Schwabe-Institut für Mess- und Sensortechnik e.V. MeinsbergWaldheimGermany