Skip to main content

Amperometry

  • Reference work entry
  • First Online:
Encyclopedia of Applied Electrochemistry

Introduction

Definition

The term “amperometry” describes an electroanalytical technique which is based on a constant polarization voltage ranging within the plateau of the diffusion limited current [1, 2] according to Fig. 1. According to the comparison given by Delehay et al. [3], amperometry can be distinguished easily from voltammetry by the quantity being controlled (electrode potential E and concentration c, respectively) and the quantity being measured (electrode current I = f(c) and I = f(E), respectively). The electrode potential E of an amperometric measuring electrode has to be fixed within the diffusion limited current plateau in the voltammogram I = f(E).

Amperometry, Fig. 1
figure 144 figure 144

Schematic drawing of voltammograms at different concentrations c 1 c 3 with diffusion limited current plateaus, symbols according to Eq. 1

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 999.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Oehme F (1991) Liquid electrolyte sensors: potentiometry, amperometry and conductometry. In: Göpel W, Hesse J, Zemel JN (eds) Sensors-a comprehensive survey, vol 2. VCH Verlagsgesellschaft, Weinheim, p 288

    Google Scholar 

  2. Fabry P, Siebert E (1997) Electrochemical sensors. In: Gellings PJ, Bouwmeester HJM (eds) The CRC handbook of solid state electrochemistry. CRC Press, New York, p 354

    Google Scholar 

  3. Delahay P, Charlot G, Laitinen HA (1960) Classification and nomenclature of electroanalytical methods. Anal Chem 32:103A–108A

    Google Scholar 

  4. Rideal S, Evans UR (1913) An electrochemical indicator for oxidising agents. J Soc Public Anal 38:353–363

    CAS  Google Scholar 

  5. Shekhar H, Chathapuram V, Hyun SH, Hong S, Cho HJ (2003) A disposable microsensor for continuous monitoring of free chlorine in water. IEEE Sens 1:67–70

    Google Scholar 

  6. Clark LC (1956) Electrochemical device for chemical analysis. US Patent 2 913 386

    Google Scholar 

  7. Tödt F (1958) Elektrochemische Sauerstoffmessung. de Gruyter, Berlin

    Google Scholar 

  8. Schwabe K, Bär J, Steinhauer H (1965) Zur Systematik der elektrochemischen Analysenmethoden und amperometrische Verfahren zur Betriebskontrolle. Chem Ing Tech 37:483–492

    Google Scholar 

  9. Oswin H, Blurton K (1970) Electrochemical detection cell. US Patent 3 776 832

    Google Scholar 

  10. Bulliere C (1966) Diplome d’Etudes Superieures, Grenoble

    Google Scholar 

  11. Oehme F, Ertl S (1979) Industrielle Amperometrie: Messung von Diffusionsströmen an starren Elektroden als Mittel zur Konzentrationsbestimmung. Chem Tech 8:95–100

    CAS  Google Scholar 

  12. Heineman WR, Kissinger PT (1984) Laboratory techniques in electroanalytical chemistry. Deeker, New York

    Google Scholar 

  13. Deslouis C, Gil O, Tribollet B (1990) Frequency response of electrochemical sensors to hydrodynamic fluctuations. J Fluid Mech 215:85–100

    CAS  Google Scholar 

  14. Hitchman ML (1978) Measurement of dissolved oxygen. Wiley, New York

    Google Scholar 

  15. Holze R (1998) Leitfaden der Elektrochemie. Teubner, Stuttgart/Leipzig

    Google Scholar 

  16. Linek V, Benes P, Sinkule J, Vacek V (1988) Measurement of oxygen by membrane-covered probes: guidelines for applications in chemical and biochemical engineering. Ellis Horwood, Chichester

    Google Scholar 

  17. Schmalzried H (1995) Chemical kinetics of solids. Weinheim, VCH, p 368

    Google Scholar 

  18. Kleitz M, Siebert E, Fabry P, Fouletier J (1991) Solid-state electrochemical sensors. In: Göpel W, Hesse J, Zemel JN (eds) Sensors – a comprehensive survey, vol 2. Weinheim, VCH, p 415

    Google Scholar 

  19. Usui T, Asada A, Nakazawa M, Osanai H (1989) Gas polarographic oxygen sensor using an oxygen/zirconia electrolyte. J Electrochem Soc 136:534–542. doi:10.1149/1.2096676

    CAS  Google Scholar 

  20. Liaw BY, Weppner W (1990) Low temperature limiting-current oxygen sensors using tetragonal zirconia as solid electrolytes. Solid State Ion 40(41):428–432

    Google Scholar 

  21. Saji K (1987) Characteristics of limiting current-type oxygen sensor. J Electrochem Soc 134:2431–2435

    Google Scholar 

  22. Draft Document 660/25: Expression of performance of electrochemical analyzers. Part IV: dissolved oxygen in water utilizing membrane-covered amperometric aensors; International Electrotechnical Commission (IEC), Rue de Varembe, CH-1211 Genf 20, CH

    Google Scholar 

  23. Oehme F, Schuler P (1983) Gelöst-Sauerstoff-Messung. Hüthig, Heidelberg, p 130

    Google Scholar 

  24. Mancy KH, Okun DA, Reilley CN (1962) A galvanic cell oxygen analyzer. J Electroanal Chem 4:65–92

    CAS  Google Scholar 

  25. Guth U, Vonau W, Zosel J (2009) Recent developments in electrochemical sensor application and technology – a review. Meas Sci Technol 20, pp 14

    Google Scholar 

  26. Mackereth FJH (1964) An improved galvanic cell for determination of oxygen concentrations in fluids. J Sci Instr 41:38–41. doi:10.1088/0950-7671/41/1/311

    CAS  Google Scholar 

  27. Mackereth FJH (1962) Electrolytic oxygen sensor. US 3322662

    Google Scholar 

  28. Heitz E, Kreysa G (1986) Principles of electrochemical engineering. VCH, Weinheim/New York, p 108

    Google Scholar 

  29. Züllig H (1977) Gas-Wasser-Fach Wasser/Abwasser 118:227–234

    Google Scholar 

  30. Hughes S, Johnson DC (1981) Amperometric detection of simple carbohydrates at platinum electrodes in alkaline solutions by application of a triple-pulse potential waveform. Anal Chim Acta 132:11–22

    CAS  Google Scholar 

  31. Havas J (1985) Ion- and molecule-selective electrodes in biological systems. Springer, Berlin

    Google Scholar 

  32. Clark LC (1987) In: Turner APF, Karube J, Wilson GS (eds) Biosensors. Oxford University Press, Oxford

    Google Scholar 

  33. Stetter JR, Li J (2008) Amperometric gas sensors – a review. Chem Rev 108:352–366 l.c. [1]:p 306

    Google Scholar 

  34. Oehme F (1991) Liquid electrolyte sensors: potentiometry, amperometry and conductometry. In: Göpel W, Hesse J, Zemel JN (eds) Sensors-a comprehensive survey, vol 2. VCH Verlagsgesellschaft, Weinheim, p 306

    Google Scholar 

  35. Vonau W, Zosel J, Decker M, Gerlach F (2012) The impact of thick film technology on the development of electrochemical sensors. In: Panzini MI (ed) Thick films: properties, technology and applications. Nova Science, New York, p 177

    Google Scholar 

  36. Saji K, Takahashi H, Kondo H, Takeuchi T, Igarashi I (1984) Proceedings of 4th sensor symposium, IEE of Japan, pp 147–151

    Google Scholar 

  37. Schmidt-Zhang P, Sandow KP, Adolf F, Göpel W, Guth U (2000) A novel thick film sensor for simultaneous O2 and NO monitoring in exhaust gases. Sens Actuators B 70:25–29

    CAS  Google Scholar 

  38. Peng Z, Liu M, Balko E (2001) A new type of amperometric oxygen sensor based on a mixed-conducting composite membrane. Sens Actuators B 72:35–40

    CAS  Google Scholar 

  39. Ullmann H (1993) Keramische Gassensoren: Grundlagen – Aufbau – Anwendung. Akademieverlag, Berlin

    Google Scholar 

  40. Katahira K, Matsumoto H, Iwahara H, Koide K, Iwamoto T (2001) A solid electrolyte hydrogen sensor with an electrochemically-supplied hydrogen standard. Sens Actuators B 73:130–134

    CAS  Google Scholar 

  41. Ono M, Shimanoe K, Miura N, Yamazoe N (2001) Reaction analysis on sensing electrode of amperometric NO2 sensor based on sodium ion conductor by using chronopotentiometry. Sens Actuators B 77:78–83

    CAS  Google Scholar 

  42. Somov SI, Reinhardt G, Guth U, Göpel W (2000) Multi-electrode zirconia electrolyte amperometric sensors. Solid State Ion 136–137:543–547

    Google Scholar 

  43. Coillard V, Debéda H, Lucat C, Ménil F (2001) Nitrogen monoxide detection with a planar spinel coated amperometric sensor. Sens Actuators B 78:113–118

    CAS  Google Scholar 

  44. Schmidt-Zhang P, Guth U (2004) A planar thick film sensor for hydrocarbon monitoring in exhaust gases. Sens Actuators B 99:258–263

    CAS  Google Scholar 

  45. Schmidt-Zhang P, Zhang WF, Gerlach F, Ahlborn K, Guth U (2005) Electrochemical investigations on multi-metallic electrodes for amperometric NO gas sensors. Sens Actuators B 108:797–802

    CAS  Google Scholar 

  46. Dzyadevych SV, Arkhypova VN, Soldatkin AP, El’skaya AV, Martelet C, Jaffrezic-Renault N (2008) Amperometric enzyme biosensors: past, present and future. IRBM 29:171–180

    Google Scholar 

  47. Chin CD, Linder V, Sia SK (2007) Lab-on-a-chip devices for global health: past studies and future opportunities. Lab Chip 7:41–57

    CAS  Google Scholar 

  48. Tuchtenhagen D, Jung G (2006) Device for determining the characteristics of a gas. WO Patent 2006/005332 A3

    Google Scholar 

  49. Yang YL, Chuang MC, Lou SL, Wang J (2010) Thick-film textile-based amperometric sensors and biosensors. Analyst 135:1230–1234

    CAS  Google Scholar 

  50. Ewing AG, Chen TK, Chen G (1995) Voltammetric and amperometric probes for single-cell analysis. Neuromethods 27:269–304

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jens Zosel .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this entry

Cite this entry

Zosel, J. (2014). Amperometry. In: Kreysa, G., Ota, Ki., Savinell, R.F. (eds) Encyclopedia of Applied Electrochemistry. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-6996-5_216

Download citation

Publish with us

Policies and ethics