Skip to main content

Ions in Clays

  • Reference work entry
  • First Online:
  • 250 Accesses

Introduction and Description

Clay minerals are layered aluminosilicates (mixed silicon and aluminum oxides), which are ubiquitous in soils and the underground. Due to their behavior with respect to ions and water, they play an important role in many environmental and industrial processes, which exploit their mechanical (swelling), catalytic, or retention (e.g., cation exchange) properties. As an example, their ability to retain ions explains their consideration as part of natural (argillite rocks) and engineered (bentonite buffers) barriers for the geological disposal of toxic and radioactive waste. Clays also play a crucial role in the context of natural gas reservoirs or possible future carbon dioxide repositories, as they are a major component of cap rocks above these reservoirs. The properties of clay minerals are intimately related to their chemical composition and structure, which results in most cases in a permanent negative charge compensated by counterions. We discuss here the...

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   999.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Boek ES, Coveney PV, Skipper NT (1995) Monte-Carlo molecular modelling studies of hydrated Li-, Na- and K-smectites: understanding the role of potassium as a clay swelling inhibitor. J Am Chem Soc 117:12608–12617

    CAS  Google Scholar 

  2. Hensen EJM, Tambach TJ, Bliek A, Smit B (2001) Adsorption isotherms of water in Li-, Na- and K-montmorillonite by molecular simulation. J Chem Phys 115:3322–3329

    CAS  Google Scholar 

  3. Glaus MA, Baeyens B, Bradbury MH, Jakob A, Van Loon LR, Yaroshchuk A (2007) Diffusion of 22Na and 85Sr in montmorillonite: evidence of interlayer diffusion being the dominant pathway at high compaction. Environ Sci Technol 41:478–485

    CAS  Google Scholar 

  4. Malikova N, Dubois E, Marry V, Rotenberg B, Turq P (2010) Dynamics in clays – combining neutron scattering and microscopic simulation. Z Phys Chem 244:153–181

    Google Scholar 

  5. Rotenberg B, Cadène A, Dufrêche JF, Durand-Vidal S, Badot JC, Turq P (2005) An analytical model for probing ion dynamics in clays with broadband dielectric spectroscopy. J Phys Chem B 109:15548–15557

    CAS  Google Scholar 

  6. Cadène A, Rotenberg B, Durand-Vidal S, Badot JC, Turq P (2006) Dielectric Spectroscopy as a probe for dynamic properties of compacted smectites. Phys Chem Earth 31(10–14):505–510

    Google Scholar 

  7. Sutton R, Sposito G (2001) Molecular simulation of interlayer structure and dynamics in 12.4 ÅCs-smectite hydrates. J Coll Interface Sci 237:174–184

    CAS  Google Scholar 

  8. Marry V, Turq P, Cartailler P, Levesque D (2002) Microscopic simulation for structure and dynamics of water and counterions in a monohydrated montmorillonite. J Chem Phys 117:3454–3463

    CAS  Google Scholar 

  9. Marry V, Turq P (2003) Microscopic simulations of interlayer structure and dynamics in bihydrated heteroionic montmorillonite. J Phys Chem B 107:1832–1839

    CAS  Google Scholar 

  10. Malikova N, Marry V, Dufrêche JF, Turq P (2004) Na/Cs-montmorillonite: temperature activation of diffusion by simulation. Curr Opin Coll Interface Sci 9:124–127

    CAS  Google Scholar 

  11. Michot LJ, Ferrage E, Jimenez-Ruiz M, Boehm M, Delville A (2012) Anisotropic features of water and ion dynamics in synthetic Na- and Ca-smectites with tetrahedral layer charge. A combined quasi-elastic neutron-scattering and molecular dynamics simulations study. J Phys Chem C 116:16619–16633

    CAS  Google Scholar 

  12. Rotenberg B, Morel JP, Marry V, Turq P, Morel-Desrosiers N (2009) On the driving force of cation exchange in clays: insights from combined microcalorimetry experiments and molecular simulation. Geochim Cosmochim Acta 73:4034–4044

    CAS  Google Scholar 

  13. Tazi S, Rotenberg B, Salanne M, Sprik M, Sulpizi M (2012) Absolute acidity of clay edge sites from ab-initio simulations. Geochim Cosmochim Acta 94:1–11

    CAS  Google Scholar 

  14. Paineau E, Bihannic I, Baravian C, Philippe AM, Davidson P, Funari SS, Rochas C, Michot LJ (2001) Aqueous suspensions of natural swelling clay minerals. 1. Structure and electrostatic interactions. Langmuir 27:5562–5573

    Google Scholar 

  15. Paineau E, Michot LJ, Bihannic I, Baravian C (2001) Aqueous suspensions of natural swelling clay minerals. 2. Rheological characterization. Langmuir 27:7806–7819

    Google Scholar 

  16. Greathouse JA, Cygan RT (2005) Molecular dynamics simulation of Uranyl(VI) adsorption equilibria onto an external montmorillonite surface. Phys Chem Chem Phys 7:3580–3586

    CAS  Google Scholar 

  17. Greathouse JA, Cygan RT (2006) Water structure and aqueous Uranyl(VI) adsorption equilibria onto external surfaces of beidellite, montmorillonite and pyrophillite: results from molecular simulations. Environ Sci Technol 40:3865–3871

    CAS  Google Scholar 

  18. Marry V, Rotenberg B, Turq P (2008) Structure and dynamics of water at a clay surface from molecular dynamics simulation. Phys Chem Chem Phys 10:4802–4813

    CAS  Google Scholar 

  19. Tournassat C, Chapron Y, Leroy P, Bizi M, Boulahya F (2009) Comparison of molecular dynamics simulations with triple layer and modified Gouy-Chapman models in a 0.1 M NaCl-montmorillonite system. J Coll Interface Sci 339:533–541

    CAS  Google Scholar 

  20. Rotenberg B, Marry V, Malikova N, Turq P (2010) Molecular simulation of aqueous solutions at clay surfaces. J Phys Condense Matter 22:284114

    CAS  Google Scholar 

  21. Bourg IC, Sposito G (2011) Molecular dynamics simulations of the electrical double layer on smectite surfaces contacting concentrated mixed electrolyte (NaCl-CaCl2) solutions. J Coll Interface Sci 360:701–715

    CAS  Google Scholar 

  22. Moyne C, Murad MA (2006) A two-scale model for coupled electro-chemo-mechanical phenomena and Onsager’s reciprocity relations in expansive clays: I homogenization analysis. Transp Porous Media 62:333–380

    CAS  Google Scholar 

  23. Botan A, Marry V, Rotenberg B, Turq P, Noetinger B (2013) How electrostatics influences hydrodynamic boundary conditions: Poiseuille and electro-osmostic flows in clay nanopores. J Phys Chem C 117:978–985

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pierre Turq .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this entry

Cite this entry

Turq, P., Rotenberg, B., Marry, V., Dufreche, J.F. (2014). Ions in Clays. In: Kreysa, G., Ota, Ki., Savinell, R.F. (eds) Encyclopedia of Applied Electrochemistry. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-6996-5_20

Download citation

Publish with us

Policies and ethics