Encyclopedia of Applied Electrochemistry

2014 Edition
| Editors: Gerhard Kreysa, Ken-ichiro Ota, Robert F. Savinell

Ions in Clays

  • Pierre Turq
  • Benjamin Rotenberg
  • Virginie Marry
  • Jean François Dufreche
Reference work entry
DOI: https://doi.org/10.1007/978-1-4419-6996-5_20

Introduction and Description

Clay minerals are layered aluminosilicates (mixed silicon and aluminum oxides), which are ubiquitous in soils and the underground. Due to their behavior with respect to ions and water, they play an important role in many environmental and industrial processes, which exploit their mechanical (swelling), catalytic, or retention (e.g., cation exchange) properties. As an example, their ability to retain ions explains their consideration as part of natural (argillite rocks) and engineered (bentonite buffers) barriers for the geological disposal of toxic and radioactive waste. Clays also play a crucial role in the context of natural gas reservoirs or possible future carbon dioxide repositories, as they are a major component of cap rocks above these reservoirs. The properties of clay minerals are intimately related to their chemical composition and structure, which results in most cases in a permanent negative charge compensated by counterions. We discuss here the...

This is a preview of subscription content, log in to check access.

References

  1. 1.
    Boek ES, Coveney PV, Skipper NT (1995) Monte-Carlo molecular modelling studies of hydrated Li-, Na- and K-smectites: understanding the role of potassium as a clay swelling inhibitor. J Am Chem Soc 117:12608–12617Google Scholar
  2. 2.
    Hensen EJM, Tambach TJ, Bliek A, Smit B (2001) Adsorption isotherms of water in Li-, Na- and K-montmorillonite by molecular simulation. J Chem Phys 115:3322–3329Google Scholar
  3. 3.
    Glaus MA, Baeyens B, Bradbury MH, Jakob A, Van Loon LR, Yaroshchuk A (2007) Diffusion of 22Na and 85Sr in montmorillonite: evidence of interlayer diffusion being the dominant pathway at high compaction. Environ Sci Technol 41:478–485Google Scholar
  4. 4.
    Malikova N, Dubois E, Marry V, Rotenberg B, Turq P (2010) Dynamics in clays – combining neutron scattering and microscopic simulation. Z Phys Chem 244:153–181Google Scholar
  5. 5.
    Rotenberg B, Cadène A, Dufrêche JF, Durand-Vidal S, Badot JC, Turq P (2005) An analytical model for probing ion dynamics in clays with broadband dielectric spectroscopy. J Phys Chem B 109:15548–15557Google Scholar
  6. 6.
    Cadène A, Rotenberg B, Durand-Vidal S, Badot JC, Turq P (2006) Dielectric Spectroscopy as a probe for dynamic properties of compacted smectites. Phys Chem Earth 31(10–14):505–510Google Scholar
  7. 7.
    Sutton R, Sposito G (2001) Molecular simulation of interlayer structure and dynamics in 12.4 ÅCs-smectite hydrates. J Coll Interface Sci 237:174–184Google Scholar
  8. 8.
    Marry V, Turq P, Cartailler P, Levesque D (2002) Microscopic simulation for structure and dynamics of water and counterions in a monohydrated montmorillonite. J Chem Phys 117:3454–3463Google Scholar
  9. 9.
    Marry V, Turq P (2003) Microscopic simulations of interlayer structure and dynamics in bihydrated heteroionic montmorillonite. J Phys Chem B 107:1832–1839Google Scholar
  10. 10.
    Malikova N, Marry V, Dufrêche JF, Turq P (2004) Na/Cs-montmorillonite: temperature activation of diffusion by simulation. Curr Opin Coll Interface Sci 9:124–127Google Scholar
  11. 11.
    Michot LJ, Ferrage E, Jimenez-Ruiz M, Boehm M, Delville A (2012) Anisotropic features of water and ion dynamics in synthetic Na- and Ca-smectites with tetrahedral layer charge. A combined quasi-elastic neutron-scattering and molecular dynamics simulations study. J Phys Chem C 116:16619–16633Google Scholar
  12. 12.
    Rotenberg B, Morel JP, Marry V, Turq P, Morel-Desrosiers N (2009) On the driving force of cation exchange in clays: insights from combined microcalorimetry experiments and molecular simulation. Geochim Cosmochim Acta 73:4034–4044Google Scholar
  13. 13.
    Tazi S, Rotenberg B, Salanne M, Sprik M, Sulpizi M (2012) Absolute acidity of clay edge sites from ab-initio simulations. Geochim Cosmochim Acta 94:1–11Google Scholar
  14. 14.
    Paineau E, Bihannic I, Baravian C, Philippe AM, Davidson P, Funari SS, Rochas C, Michot LJ (2001) Aqueous suspensions of natural swelling clay minerals. 1. Structure and electrostatic interactions. Langmuir 27:5562–5573Google Scholar
  15. 15.
    Paineau E, Michot LJ, Bihannic I, Baravian C (2001) Aqueous suspensions of natural swelling clay minerals. 2. Rheological characterization. Langmuir 27:7806–7819Google Scholar
  16. 16.
    Greathouse JA, Cygan RT (2005) Molecular dynamics simulation of Uranyl(VI) adsorption equilibria onto an external montmorillonite surface. Phys Chem Chem Phys 7:3580–3586Google Scholar
  17. 17.
    Greathouse JA, Cygan RT (2006) Water structure and aqueous Uranyl(VI) adsorption equilibria onto external surfaces of beidellite, montmorillonite and pyrophillite: results from molecular simulations. Environ Sci Technol 40:3865–3871Google Scholar
  18. 18.
    Marry V, Rotenberg B, Turq P (2008) Structure and dynamics of water at a clay surface from molecular dynamics simulation. Phys Chem Chem Phys 10:4802–4813Google Scholar
  19. 19.
    Tournassat C, Chapron Y, Leroy P, Bizi M, Boulahya F (2009) Comparison of molecular dynamics simulations with triple layer and modified Gouy-Chapman models in a 0.1 M NaCl-montmorillonite system. J Coll Interface Sci 339:533–541Google Scholar
  20. 20.
    Rotenberg B, Marry V, Malikova N, Turq P (2010) Molecular simulation of aqueous solutions at clay surfaces. J Phys Condense Matter 22:284114Google Scholar
  21. 21.
    Bourg IC, Sposito G (2011) Molecular dynamics simulations of the electrical double layer on smectite surfaces contacting concentrated mixed electrolyte (NaCl-CaCl2) solutions. J Coll Interface Sci 360:701–715Google Scholar
  22. 22.
    Moyne C, Murad MA (2006) A two-scale model for coupled electro-chemo-mechanical phenomena and Onsager’s reciprocity relations in expansive clays: I homogenization analysis. Transp Porous Media 62:333–380Google Scholar
  23. 23.
    Botan A, Marry V, Rotenberg B, Turq P, Noetinger B (2013) How electrostatics influences hydrodynamic boundary conditions: Poiseuille and electro-osmostic flows in clay nanopores. J Phys Chem C 117:978–985Google Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Pierre Turq
    • 1
  • Benjamin Rotenberg
    • 1
  • Virginie Marry
    • 1
  • Jean François Dufreche
    • 2
  1. 1.Laboratoire Physicochimie des Electrolytes, Colloïdes et Sciences Analytiques, CNRS, ESPCIUniversité Pierre et Marie Curie, ParisFrance
  2. 2.Institut de Chimie Séparative de Marcoule and Université MontpellierMarcouleFrance