Encyclopedia of Applied Electrochemistry

2014 Edition
| Editors: Gerhard Kreysa, Ken-ichiro Ota, Robert F. Savinell

Alkaline Membrane Fuel Cells

Reference work entry
DOI: https://doi.org/10.1007/978-1-4419-6996-5_181

This chapter reviews a new type of solid electrolyte low-temperature fuel cell, the alkaline membrane fuel cell. The principles and main components of this fuel cell technology are described, with a major focus on the electrocatalysts for both electrodes. Finally, the latest published results on operation of the first developed alkaline membrane fuel cells are reviewed.

Introduction

The alkaline membrane fuel cell (AMFC) technology, also referred to as anion exchange membrane fuel cell (AEMFC), is in principle similar to the proton exchange membrane fuel cell (PEMFC), with the main difference that the solid membrane is an anion exchange membrane (AEM) instead of a proton exchange membrane (PEM). With an anion exchange membrane in the alkaline membrane fuel cell, the OH is being transported from the cathode to the anode, opposite to the H+conduction direction in the proton exchange membrane fuel cell. The schematic diagram below shows this main difference between the proton exchange...

This is a preview of subscription content, log in to check access

References

  1. 1.
    Pivovar BS (2006) Alkaline membrane fuel cell workshop final report. http://www1.eere.energy.gov/hydrogenandfuelcells/pdfs/amfc_dec2006_workshop_report.pdf. Accessed 6 Nov 2012
  2. 2.
    Dekel D (2012) Alkaline membrane fuel cells: Membranes. In: Savinell R, Ota K, Kreysa G (ed) Encyclopedia of applied electrochemistry. Springer, Berlin/Heidelberg. www.springerreference.com, doi:10.1007/SpringerReference_349797. Accessed 15 Dec 2012
  3. 3.
    Dekel DR (2012) Latest advances in Alkaline Membrane Fuel Cell (AMFC) technology. In: Carisma 2012: 3rd Carisma international conference, September 3rd 2012, Copenhagen. http://www.hotmea.kemi.dtu.dk/upload/institutter/ki/hotmea/carisma%202012/abstracts/dekel%20carisma%202012.pdf. Accessed 21 Dec 2012
  4. 4.
    Pivovar BS (2011) Alkaline membrane fuel cell workshop final report. http://www.nrel.gov/docs/fy12osti/54297.pdf. Accessed 6 Nov 2012
  5. 5.
    Dekel D (2012) Alkaline Membrane Fuel Cell (AMFC) materials and system improvement – state-of-the-art. ECS Trans 50:2051–2052Google Scholar
  6. 6.
    Sheng W, Gasteiger HA, Shao-Horn Y (2010) Hydrogen oxidation and evolution reaction kinetics on platinum: acid vs alkaline electrolytes. J Electrochem Soc 157(11):B1529–B1536. doi:10.1149/1.3483106Google Scholar
  7. 7.
    Strmcnik D, Kodama K, van der Vliet D, Greeley J, Stamenkovic VR, Marković NM (2009) The role of non-covalent interactions in electrocatalytic fuel-cell reactions on platinum. Nat Chem 1(6):466–472Google Scholar
  8. 8.
    Zelenay P, Brosha E, Choi JH, Davey J, Garzon F, Hamon C, Piela B, Ramsey J, Uribe F (2005) Non-precious metal catalysts. DOE hydrogen program, FY 2005 progress report. http://www.hydrogen.energy.gov/pdfs/progress05/vii_c_7_zelenay.pdf. Accessed 13 Nov 2012
  9. 9.
    Wu G, More KL, Johnston CM, Zelenay P (2011) High-performance electrocatalysts for oxygen reduction derived from polyaniline, iron, and cobalt. Science 332:443–447. doi:10.1126/science.1200832Google Scholar
  10. 10.
    Suo Y, Zhuang L, Lu J (2007) First-principles considerations in the design of Pd-alloy catalysts for oxygen reduction. Angew Chem Int Ed 46:2862–2864. doi:10.1002/anie.200604332Google Scholar
  11. 11.
    Jiang L, Hsu A, Chu D, Chen R (2009) Oxygen reduction reaction on carbon supported Pt and Pd in alkaline solutions. J Electrochem Soc 156(3):B370–B376. doi:10.1149/1.3058586Google Scholar
  12. 12.
    Blizanac BB, Ross PN, Markovic NM (2006) Oxygen reduction on silver low-index single-crystal surfaces in alkaline solution: rotating ring diskAg(hkl) studies. J Phys Chem B 110:4735–4741. doi:10.1021/jp056050dGoogle Scholar
  13. 13.
    Chatenet M, Genies-Bultel L, Aurousseau M, Durand R, Andolfatto F (2002) Oxygen reduction on silver catalysts in solutions containing various concentrations of sodium hydroxide: comparison with platinum. J Appl Electrochem 32:1131–1140Google Scholar
  14. 14.
    Shimizu Y (2012) Anion-exchange membrane fuel cells: oxide-based catalysts. In: Savinell R, Ota K, Kreysa G (ed) Encyclopedia of applied electrochemistry. Springer, Berlin/Heidelberg. www.springerreference.com, doi: 10.1007/SpringerReference_303656. Accessed 17 Jan 2012
  15. 15.
    Jiang L, Hsu A, Chu D, Chen R (2010) A highly active Pd coated Ag electrocatalyst for oxygen reduction reactions in alkaline media. Electrochim Acta 55:4506–4511. doi:10.1016/j.electacta.2010.02.094Google Scholar
  16. 16.
    Piana M, Catanorchi S, Gasteiger HA (2008) Kinetics of non-platinum group metal catalysts for the oxygen reduction reaction in alkaline medium. ECS Trans 16(2):2045–2055Google Scholar
  17. 17.
    Meng H, Jaouen F, Proietti E, Lefèvre M, Dodelet JP (2009) pH-effect on oxygen reduction activity of Fe-based electro-catalysts. Electrochem Commun 11(10):1986–1989. doi:10.1016/j.elecom.2009.08.035Google Scholar
  18. 18.
    He Q, Yang X, He R, Bueno-López A, Miller H, Ren X, Yang W, Koel BE (2012) Electrochemical and spectroscopic study of novel Cu and Fe-based catalysts for oxygen reduction in alkaline media. J Power Sources 213:169–179. doi:10.1016/j.jpowsour.2012.04.029Google Scholar
  19. 19.
    Mamlouk M, Kumar SMS, Gouerec P, Scott K (2011) Electrochemical and fuel cell evaluation of Co based catalyst for oxygen reduction in anion exchange polymer membrane fuel cells. J Power Sources 196(18):7594–7600. doi:10.1016/j.jpowsour.2011.04.045Google Scholar
  20. 20.
    Yanagi H, Fukuta K (2008) Anion exchange membrane and ionomer for alkaline membrane fuel cells (AMFCs). ECS Trans 16(2):257–262. doi:10.1149/1.2981860Google Scholar
  21. 21.
    Sleightholme AES, Varcoe JR, Kucernak AR (2008) Oxygen reduction at the silver/hydroxide-exchange membrane interface. Electrochem Commun 10:151–155. doi:10.1016/j.elecom.2007.11.008Google Scholar
  22. 22.
    Neyerlin KC, Gu W, Jorne J, Gasteiger HA (2007) A study of the exchange current density for the hydrogen oxidation and evolution reactions. J Electrochem Soc 154:B631–B635. doi:10.1149/1.2733987Google Scholar
  23. 23.
    Rheinländer P, Henning S, Herranz J, Gasteiger HA (2012) Comparing hydrogen oxidation and evolution reaction kinetics on polycrystalline platinum in 0.1 M and 1 M KOH. ECS Trans 50(2):2163–2174Google Scholar
  24. 24.
    Lu S, Pan J, Huang A, Zhuang L, Lu J (2008) Alkaline polymer electrolyte fuel cells completely free from noble metal catalysts. Proc Natl Acad Sci 105(52):20611–20614. doi:10.1073/pnas.0810041106Google Scholar
  25. 25.
    Tang DP, Pan J, Lu SF, Zhuang L, Lu JT (2010) Alkaline polymer electrolyte fuel cells: principle, challenges, and recent progress. Sci China 53(2):357–364. doi:10.1007/s11426-010-0080-5Google Scholar
  26. 26.
    Jung MJ, Arges CG, Ramani V (2011) A perfluorinated anion exchange membrane with a 1,4-dimethylpiperazinium cation. J Mater Chem 21:6158–6160. doi:10.1039/c1jm10320bGoogle Scholar
  27. 27.
    Luo Y, Guo J, Wang C, Chu D (2011) Tunable high-molecular-weight anion-exchange membranes for alkaline fuel cells. Macromol Chem Phys 212:2094–2102. doi:10.1002/macp.201100218Google Scholar
  28. 28.
    Switzer EE, Olson TS, Datye AK, Atanassov P, Hibbs MR, Fujimoto C, Cornelius CJ (2010) Novel KOH-free anion-exchange membrane fuel cell: performance comparison of alternative anion-exchange ionomers in catalyst ink. Electrochim Acta 55:3404–3408. doi:10.1016/j.electacta.2009.12.073Google Scholar
  29. 29.
    Gu S, Cai R, Luo T, Chen Z, Sun M, Liu Y, He G, Yan Y (2009) A soluble and highly conductive ionomer for high-performance hydroxide exchange membrane fuel cells. Angew Chem 121:6621–6624. doi:10.1002/ange.200806299Google Scholar
  30. 30.
    Park JS, Park GG, Park SH, Yoon YG, Kim GS, Lee WY (2007) Development of solid-state alkaline electrolytes for solid alkaline fuel cells. Macromol Symp 249–250:174–182. doi:10.1002/masy.200750329Google Scholar
  31. 31.
    Park JS, Park SH, Yim SD, Yoon YG, Lee WY, Kim CS (2008) Performance of solid alkaline fuel cells employing anion-exchange membranes. J Power Sources 178:620–626. doi:10.1016/j.jpowsour.2007.08.043Google Scholar
  32. 32.
    Varcoe JR, Slade RCT, Yee ELH, Poynton SD, Driscoll DJ, Apperley DC (2007) Poly(ethylene-co-tetrafluoroethylene)-derived radiation-grafted anion-exchange membrane with properties specifically tailored for application in metal-cation-free alkaline polymer electrolyte fuel cells. Chem Mater 19(10):2686–2693. doi:10.1021/cm062407uGoogle Scholar
  33. 33.
    Gottesfeld S (2011) Breaking the fuel cell cost barrier. DOE AMFC workshop. http://www1.eere.energy.gov/hydrogenandfuelcells/pdfs/amfc_050811_gottesfeld_cellera.pdf. Accessed13 Nov 2012
  34. 34.
    www.cellera-inc.com. Accessed 22 Dec 2012
  35. 35.
    Kim YS (2011) Resonance-stabilized anion exchange polymer electrolytes. US DOE hydrogen and fuel cells program and vehicle technologies program annual merit review. http://www.hydrogen.energy.gov/pdfs/review11/fc043_kim_2011_o.pdf. Accessed 15 Nov 2012
  36. 36.
    Fukuta K (2011) Electrolyte materials for AMFCs electrolyte materials for AMFCs and AMFC performance. DOE AMFC workshop. http://www1.eere.energy.gov/hydrogenandfuelcells/pdfs/amfc_050811_fukuta.pdf. Accessed 15 Nov 2012
  37. 37.
    Uribe FA, Gottesfeld S, Zawodzinski TA (2002) Effect of ammonia as potential fuel impurity on proton exchange membrane fuel cell performance. J Electrochem Soc 149(3):A293–A296. doi:10.1149/1.1447221Google Scholar
  38. 38.
    Matsuoka k, Iriyama y, Abe T, Matsuoka M, Ogumi Z (2005) Alkaline direct alcohol fuel cells using an anion exchange membrane. J Power Sources 150:27–31. doi:10.1016/j.jpowsour.2005.02.020Google Scholar
  39. 39.
    Yang CC, Chiu SJ, Lin CT (2008) Electrochemical performance of an air-breathing direct methanol fuel cell using poly(vinyl alcohol)/hydroxyapatite composite polymer membrane. J Power Sources 177:40–49. doi:10.1016/j.jpowsour.2007.11.010Google Scholar
  40. 40.
    Yu EH, Scott K (2004) Direct methanol alkaline fuel cell with catalysed metal mesh anodes. Electrochem Commun 6:361–365. doi:10.1016/j.elecom.2004.02.002Google Scholar
  41. 41.
    Yang CC (2007) Synthesis and characterization of the cross-linked PVA/TiO2 composite polymer membrane for alkaline DMFC. J Membr Sci 288:51–60. doi:10.1016/j.memsci.2006.10.048Google Scholar
  42. 42.
    Huang A, Xia C, Xiao C, Zhuang L (2006) Composite anion exchange membrane for alkaline direct methanol fuel cell: structural and electrochemical characterization. J Appl Polym Sci 100:2248–2251. doi:10.1002/app.23579Google Scholar
  43. 43.
    Zhao TS, Li YS, Shen SY (2010) Anion-exchange membrane direct ethanol fuel cells: status and perspective. Front Energy Power Eng China 4(4):443–458. doi:10.1007/s11708-010-0127-5Google Scholar
  44. 44.
    Ragsdale SR, Ashfield CB (2008) Direct-glycerin fuel cell for mobile applications. ECS Trans 16(2):1847–1854. doi:10.1149/1.2982025Google Scholar
  45. 45.
    Zhang F, Zhang H, Ren J, Qu C (2010) PTFE based composite anion exchange membranes: thermally induced in situ polymerization and direct hydrazine hydrate fuel cell application. J Mater Chem 20:8139–8146. doi:10.1039/c0jm01311kGoogle Scholar
  46. 46.
    Tanaka M, Fukasawa K, Nishino E, Yamaguchi S, Yamada K, Tanaka H, Bae B, Miyatake K, Watanabe M (2011) Anion conductive block poly(arylene ether)s: synthesis, properties, and application in alkaline fuel cells. J Am Chem Soc 133:10646–10654. doi:10.1021/ja204166eGoogle Scholar
  47. 47.
    Lan R, Tao S (2010) Direct ammonia alkaline anion-exchange membrane fuel cells. Electrochem Solid State Lett 13(8):B83–B86. doi:10.1149/1.3428469Google Scholar
  48. 48.
    Suzuki S, Muroyama H, Matsui T, Eguchi K (2012) Fundamental studies on direct ammonia fuel cell employing anion exchange membrane. J Power Sources 208:257–262. doi:10.1016/j.jpowsour.2012.02.043Google Scholar
  49. 49.
    Qu C, Zhang H, Zhang F, Liu B (2012) A high-performance anion exchange membrane based on bi-guanidinium bridged polysilsesquioxane for alkaline fuel cell application. J Mater Chem 22:8203–8207. doi:10.1039/c2jm16211cGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.CellEra Inc.CaesareaIsrael