Encyclopedia of Applied Electrochemistry

2014 Edition
| Editors: Gerhard Kreysa, Ken-ichiro Ota, Robert F. Savinell

Membrane Processes, Electrodialysis

  • Vicente Montiel
  • Vicente García-García
  • Eduardo Expósito
  • Juan Manuel Ortiz
  • Antonio Aldaz
Reference work entry
DOI: https://doi.org/10.1007/978-1-4419-6996-5_123

Introduction

Electrodialysis is an electrochemical technology of separation dating back to 1890, when Maigrot and Sabates patented a three compartment electrochemical cell [ 1]. This separation process is characterized by the selective transport of ions across a set of ion exchange membranes due to the existence of an electric field inside the membranes. The operating principle of “conventional electrodialysis” (Fig. 1) is based on an alternative placement of cation and anion exchange membranes inside a stack (“electrodialyzer”). Thus, establishing a difference of potential between two electrodes (cathode and anode) housed at the two ends of the stack inside electrode plates, cations migrate towards the cathode, and anions migrate towards the anode through the cation and anion exchange membranes, respectively. Figure 1shows that in conventional electrodialysis, three electrolytic streams flow across the set of anion and cation exchange membranes. Note that while the concentration of...
This is a preview of subscription content, log in to check access.

References

  1. 1.
    Bazinet L (2004) Electrodialytic phenomena and their applications in the dairy industry: a review. Crit Rev Food Sci Nutr 44:525–544. doi:10.1080/10408690490489279Google Scholar
  2. 2.
    Strathmann H (2010) Electrodialysis, a mature technology with a multitude of new applications. Desalination 264:268–288. doi:10.1016/j.desal.2010.04.069Google Scholar
  3. 3.
    Davis TA, Genders D, Pletcher D (1997) A first course in ion permeable membrane. The Electrochemical Consultancy, RomseyGoogle Scholar
  4. 4.
    Thang VH, Koschuh V, Kulbe KD et al (2005) Detailed investigation of an electrodialytic process during the separation of lactic acid from a complex mixture. J Membr Sci 249:173–182. doi:10.1016/j.memsci.2004.08.033Google Scholar
  5. 5.
    Montiel V, García-García V, González-García J et al (1998) Recovery by means of electrodialysis of an aromatic amino acid from a solution with a high concentration of sulphates and phosphates. J Membr Sci 140:243–250. doi:10.1016/S0376-7388(97)00275-5Google Scholar
  6. 6.
    Kikuchi K, Gotoh T, Takahashi H et al (1995) Separation of amino acids by electrodialysis with ion-exchange membranes. J Chem Eng Japan 28:103–109. doi:10.1252/jcej.28.103Google Scholar
  7. 7.
    Strathmann H (2004) Ion-exchange membrane separation process, vol 9, Membrane science and technology series. Elsevier, Amsterdam/BostonGoogle Scholar
  8. 8.
    Gineste JL, Pourcelly G, Lorrain Y et al (1996) Analysis of factors limiting the use of bipolar membranes: a simplified model to determine trends. J Membr Sci 112:199–208. doi:10.1016/0376-7388(95)00284-7Google Scholar
  9. 9.
    Tanaka Y (2007) Ion-exchange membrane fundamentals and applications, vol 12, Membrane science and technology series. Elsevier, Amsterdam/OxfordGoogle Scholar
  10. 10.
    Pourcelly G, Gavach C (2000) Electrodialysis water splitting – application of electrodialysis with bipolar membranes. In: Kemperman AJB (ed) Handbook of bipolar membrane technology. Twenty University Press, EnschedeGoogle Scholar
  11. 11.
    Sridhar S (1996) Electrodialysis in a non-aqueous medium: production of sodium methoxide. J Membr Sci 13:73–79. doi:10.1016/0376-7388(95)00217-0Google Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Vicente Montiel
    • 1
  • Vicente García-García
    • 1
  • Eduardo Expósito
    • 1
  • Juan Manuel Ortiz
    • 1
  • Antonio Aldaz
    • 1
  1. 1.Instituto Universitario de ElectroquímicaUniversity of AlicanteAlicanteSpain