Encyclopedia of Applied Electrochemistry

2014 Edition
| Editors: Gerhard Kreysa, Ken-ichiro Ota, Robert F. Savinell

Activity Coefficients

  • Werner Kunz
Reference work entry
DOI: https://doi.org/10.1007/978-1-4419-6996-5_1

Basic Definitions

At constant temperature and pressure, the chemical potential of a solute component k in a solution can be written as
$$ {\upmu_{{k}}} = {\upmu_{{k}}}^{\infty } + {\mathrm{ R}{T}\mathrm{ ln}}\ {{\mathrm{ a}}_{{k}}} = {\upmu_{{k}}}^{{\infty (\mathrm{ m})}} + {\mathrm{ R}{T}\mathrm{ ln}}\ {{\mathrm{ m}}_{{k}}}{\upgamma_{{k}}} $$
This is a preview of subscription content, log in to check access.


  1. 1.
    Pitzer KS (ed) (1991) Activity coefficients in electrolyte solutions, 2nd edn. CRC Press, Boca RatonGoogle Scholar
  2. 2.
    Robinson RA, Stokes RH (2003) Electrolyte solutions, 2nd rev edn. Dover, New YorkGoogle Scholar
  3. 3.
    Hamer WJ, Wu YC (1972) Osmotic coefficients and mean activity coefficients of Uni-univalent electrolytes in water at 25 °C. J Phys Chem Rev Data 1:1047–1099Google Scholar
  4. 4.
    Luckas M, Krissmann J (2001) Thermodynamik der Elektrolytlösungen. Springer, BerlinGoogle Scholar
  5. 5.
    Lee LL (2008) Molecular thermodynamics of electrolyte solutions. World Scientific Publishing, SingaporeGoogle Scholar
  6. 6.
    Pitzer KS, Kim JJ (1974) Thermodynamics of electrolytes. IV. Activity and osmotic coefficients for mixed electrolytes. J Am Chem Soc 96:5701–5707Google Scholar
  7. 7.
    Clegg SL, Pitzer KS (1992) Thermodynamics of multicomponent, miscible, ionic solutions: generalized equations for symmetrical electrolytes. J Phys Chem 96:3513–3520Google Scholar
  8. 8.
  9. 9.
    May PM, Rowland D, Königsberger E, Hefter, G (2010) JESS, a joint expert speciation system – IV: a large database of aqueous solution physicochemical properties with an automatic means of achieving thermodynamic consistency. Talanta 81:142–148Google Scholar
  10. 10.
  11. 11.
  12. 12.
    Ivanova EF, Aleksandrov VV (1964) Thermodynamic properties of electrolytes in nonaqueous solutions. XV. Solutions of cesium iodide in methanol and cadmium chloride in 1-butanol. Zhurnal Fizicheskoi Khimii 38:878–84Google Scholar
  13. 13.
    Barthel J, Lauermann G, Neueder R (1986) Vapor pressure measurements on non-aqueous electrolyte solutions. Part 2. Tetraalkylammonium salts in methanol. Activity coefficients of various 1–1 electrolytes at high concentrations. J Solution Chem 10:851–867Google Scholar
  14. 14.
    Barthel J, Neueder R, Poepke H, Wittmann H (1999) Osmotic coefficients and activity coefficients of nonaqueous electrolyte solutions. Part 2. Lithium perchlorate in the aprotic solvents acetone, acetonitrile, dimethoxyethane, and dimethylcarbonate. J Solution Chem 28:489–503Google Scholar
  15. 15.
    Nasirzadeh K, Neueder R, Kunz W (2005) Vapor pressures, osmotic and activity coefficients of electrolytes in protic solvents at different temperatures. 3. Lithium bromide in 2-propanol. J Solution Chem 34:9–24Google Scholar
  16. 16.
    Tsurko EN, Neueder R, Kunz W (2007) Water activity and osmotic coefficients in solutions of glycine, glutamic acid, histidine and their salts at 298.15 K and 310.15 K. J Solution Chem 36:651–672Google Scholar
  17. 17.
    Barthel J, Krienke H, Kunz W (1998) Physical chemistry of electrolyte solutions. Modern aspects. Springer, New YorkGoogle Scholar
  18. 18.
    Vrbka L, Lund M, Kalcher I, Dzubiella J, Netz RR, Kunz W (2009) Ion-specific thermodynamics of multicomponent electrolytes: a hybrid HNC/MD approach. J Chem Phys 131:154109–1–12Google Scholar
  19. 19.
    Outhwaite CW, Bhuiyan LB, Vlachy V, Hribar-Lee B (2010) Activity coefficients of an electrolyte in a mixture with a high density neutral component. J Chem Eng Data 55:4248–4254Google Scholar
  20. 20.
    Kalyuzhnyi YV, Vlachy V, Dill KA (2010) Aqueous alkali halide solutions: can osmotic coefficients be explained on the basis of the ionic sizes alone? Phys Chem Chem Phys 12:6260–6266Google Scholar
  21. 21.
    Lu X, Zhang L, Wang Y, Shi J, Maurer G (1996) Prediction of activity coefficients of electrolytes in aqueous solutions at high temperatures. Ind Eng Chem Res 35:1777–1784Google Scholar
  22. 22.
    Chen CC, Britt HI, Boston JF, Evans LB (1982) Local composition model for excess Gibbs energy of electrolyte systems. Part I: single solvent, single completely dissociated electrolyte systems. AIChE J 28:588–596Google Scholar
  23. 23.
    Simonin JP, Bernard O, Blum L (1999) Ionic solutions in the binding mean spherical approximation: thermodynamic properties of mixtures of associating electrolytes. J Phys Chem B 103:699–704Google Scholar
  24. 24.
    Papaiconomou N, Simonin JP, Bernard O, Kunz W (2002) MSA-NRTL model for the description of the thermodynamic properties of electrolyte solutions. Phys Chem Chem Phys 4:4435–4443Google Scholar
  25. 25.
    Gering KL, Lee LL, Landis LH, Savidge JL (1989) A molecular approach to electrolyte solutions: phase behavior and activity coefficients for mixed-salt and multisolvent systems. Fluid Phase Equilib 48:111–139Google Scholar
  26. 26.
    Held C, Cameretti LF, Sadowski G (2008) Modeling aqueous electrolyte solutions. Fluid Phase Equilib 270:87–96Google Scholar
  27. 27.
    Held C, Sadowski G (2009) Modeling aqueous electrolyte solutions. Part 2. Weak electrolytes. Fluid Phase Equilib 279:141–148Google Scholar
  28. 28.
    Rumpf B, Xia J, Maurer G (1998) Solubility of carbon dioxide in aqueous solutions containing acetic acid or sodium hydroxide in the temperature range from 313 to 433 K and at total pressures up to 10 MPa. Ind Eng Chem Res 37:2012–2019Google Scholar
  29. 29.
    Papaiconomou N, Simonin JP, Bernard O, Kunz W (2003) Description of vapor–liquid equilibria for CO2 in electrolyte solutions using the mean spherical approximation. J Phys Chem B 107:5948–5957Google Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.Institut für Biophysik, Fachbereich Physik, Johann Wolfgang Goethe-Universität Frankfurt am MainFrankfurt am MainGermany