Skip to main content

Interior-Point Methods for Conic-Linear Optimization

  • Reference work entry
  • First Online:
Encyclopedia of Operations Research and Management Science
  • 143 Accesses

Introduction

Even with the success of the simplex method for linear programming (LP), there was from the earliest days of operations research a desire to create an algorithm for solving LP problems that proceeded on a path through the polytope rather than around its perimeter. Interior point methods (IPMs) were first developed in 1950s, analyzed and first implemented in the 1960s. At that time the conclusion was made that IPMs were not competitive with other algorithms, especially with simplex methods. The continuous effort to find a polynomial algorithm for LP problems led to the revitalization of IPMs. In 1984 Karmarkar first proved the polynomial complexity of an IPM, which led to the “Interior Point Revolution” (Wright 2004) in mathematical programming. In this article the motivation for desiring an interior path, the concept of the complexity of solving LP problems, a brief history of the developments in the area, and the research state of the art are discussed, including...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 799.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 899.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Andersen, E. D., Roos, C., & Terlaky, T. (2003). On implementing a primal–dual interior–point method for conic quadratic optimization. Mathematical Programming, 95(2), 249–277.

    Article  Google Scholar 

  • Ben-Tal, A., & Nemirovski, A. (2001). Lectures on modern convex optimization: Analysis, algorithms, and engineering applications (MPS-SIAM series on optimization). Philadelphia, PA: SIAM.

    Book  Google Scholar 

  • Bixby, R. E. (2002). Solving real-world linear programs: A decade and more of progress. Operations Research, 50(1), 3–15.

    Article  Google Scholar 

  • Bomze, I. M., Duerr, M., de Klerk, E., Roos, C., Quist, A. J., & Terlaky, T. (2000). On copositive programming and standard quadratic optimization problems. Journal of Global Optimization, 18(2), 301–320.

    Article  Google Scholar 

  • Borgwardt, K. H. (1987). The simplex method: A probabilistic analysis, algorithms and combinatorics (Vol. 1). Berlin: Springer.

    Google Scholar 

  • Byrd, R., Nocedal, J., & Waltz, R. (2006). KNITRO: An integrated package for nonlinear optimization. In G. Di Pillo & M. Roma (Eds.), Large-scale nonlinear optimization (Nonconvex optimization and its applications, Vol. 83, pp. 35–59). Berlin: Springer.

    Chapter  Google Scholar 

  • Chu, M., Zinchenko, Y., Henderson, S. G., & Sharpe, M. B. (2008). Robust optimization for intensity modulated radiation therapy treatment planning under uncertainty. Physics in Medicine and Biology, 53, 3231–3250.

    Article  Google Scholar 

  • Craig, T., Sharpe, M. B., Terlaky, T., & Zinchenko, Y. (2008). Controlling the dose distribution with gEUD-type constraints within the convex IMRTP framework. Physics in Medicine and Biology, 53, 3231–3250.

    Article  Google Scholar 

  • de Klerk, E. (2002). Aspects of semidefinite programming: Interior point algorithms and selected applications. Dordrecht, The Netherlands: Kluwer.

    Book  Google Scholar 

  • den Hertog, D. (1994). Interior point approach to linear, quadratic and convex programming. Dordrecht, The Netherlands: Kluwer.

    Book  Google Scholar 

  • Deza, A., Nematollahi, E., Peyghami, R., & Terlaky, T. (2006). The central path visits all the vertices of the Klee-Minty cube. Optimization Methods and Software, 21, 851–865.

    Article  Google Scholar 

  • Deza, A., Nematollahi, E., & Terlaky, T. (2008). How good are interior point methods? Klee-Minty cubes tighten iteration-complexity bounds. Mathematical Programming, 113, 1–14.

    Article  Google Scholar 

  • Deza, A., Terlaky, T., & Zinchenko, Y. (2008). Polytopes and arrangements: Diameter and curvature. Operations Research Letters, 36, 215–222.

    Article  Google Scholar 

  • Deza, A., Terlaky, T., & Zinchenko, Y. (2009). The continuous d-step conjecture for polytopes. Discrete and Computational Geometry, 41, 318–327.

    Article  Google Scholar 

  • Dikin, I. I. (1967). Iterative solution of problems of linear and quadratic programming. Soviet Mathematics Doklady, 8, 674–675.

    Google Scholar 

  • Fiacco, A. V., & McCormick, G. P. (1968). Nonlinear programming: Sequential unconstrained minimization techniques. New York: John Wiley.

    Google Scholar 

  • Frish, K. R. (1954). Principles of linear programming – the double gradient form of the logarithmic potential method. Memorandum, Institute of Economics, University of Oslo, Oslo, Norway.

    Google Scholar 

  • Ghaffari Hadigheh, A. R., Romanko, O., & Terlaky, T. (2007). Sensitivity analysis in convex quadratic optimization: Simultaneous perturbation of the objective and right-hand-side vectors. Algorithmic Operations Research, 2(2), 4–111.

    Google Scholar 

  • Goldfarb, D., & Todd, M. J. (1989). Linear programming. In G. L. Nemhauser, A. H. G. Rinnooy Kan, & M. J. Todd (Eds.), Optimization (pp. 73–170). Amsterdam/New York: North Holland.

    Chapter  Google Scholar 

  • Gonzaga, C. C. (1991a). Large-steps path-following methods for linear programming, part I: Barrier function method. SIAM Journal on Optimization, 1, 268–279.

    Article  Google Scholar 

  • Gonzaga, C. C. (1991b). Large-steps path-following methods for linear programming, part II: Potential reduction method. SIAM Journal on Optimization, 1, 280–292.

    Article  Google Scholar 

  • Gonzaga, C. C. (1992). Path following methods for linear programming. SIAM Review, 34, 167–224.

    Article  Google Scholar 

  • Huard, P. (1967). Resolution of mathematical programming with nonlinear constraints by the method of centres. In J. Abadie (Ed.), Nonlinear programming (pp. 209–219). Amsterdam: North Holland.

    Google Scholar 

  • Illés, T., Peng, J., Roos, C., & Terlaky, T. (2000). A strongly polynomial rounding scheme in interior point methods for P*(κ) linear complementarity problems. SIAM Journal on Optimization, 11(2), 320–340.

    Article  Google Scholar 

  • Illés, T., & Terlaky, T. (2002). Pivot versus interior point methods: Pros and cons. European Journal of Operational Research, 140(2), 6–26.

    Article  Google Scholar 

  • Jansen, B. (1997). Interior point techniques in ptimization. Complexity, sensitivity and algorithms. Dordrecht, The Netherlands: Kluwer.

    Book  Google Scholar 

  • Karmarkar, N. K. (1984). A new polynomial-time algorithm for linear programming. Combinatorica, 4, 373–395.

    Article  Google Scholar 

  • Khachiyan, L. G. (1979). A polynomial algorithm in linear programming. Translated in Soviet Mathematics Doklady, 20, 191–194.

    Google Scholar 

  • Klee, V. & Minty, G. J. (1972). How good is the simplex algorithm. In O. Shisha (Ed.), Inequalities III (pp. 159–175). Academic Press.

    Google Scholar 

  • Kojima, M., Megiddo, N., Noma, T., & Yoshise, A. (1991). A unified approach to interior point al − go − rithms for linear complementarity problems (Lecture notes in computer science, Vol. 538). Berlin, Germany: Springer.

    Book  Google Scholar 

  • Koltai, T., & Terlaky, T. (2000). The difference between managerial and mathematical interpretation of sensitivity analysis results in linear programming. International Journal of Production Economics, 65, 257–274.

    Article  Google Scholar 

  • Nematollahi, E., & Terlaky, T. (2008). A simpler and tighter redundant Klee-Minty construction. Optimization Letters, 2(3), 403–414.

    Article  Google Scholar 

  • Nesterov, Y. E., & Nemirovskii, A. S. (1994). Interior point polynomial methods in convex programming: Theory and algorithms. Philadelphia: SIAM.

    Book  Google Scholar 

  • Peng, J., Roos, C., & Terlaky, T. (2002). Self-regularity: A new paradigm for primal-dual interior-point algorithms. Princeton, NJ: Princeton University Press.

    Google Scholar 

  • Roos, C., & Terlaky, T. (1997). Advances in linear optimization. In M. DellAmico, F. Maffioli, & S. Martello (Eds.), Annotated bibliography in combinatorial optimization, Chap − ter 7. New York: John Wiley & Sons.

    Google Scholar 

  • Roos, C., Terlaky, G. J., & Vial J. -Ph. (1997). Interior point methods for linear optimization. (New York: Springer, 2nd ed., 2006). (Roos, C., Terlaky, T., Vial, J. -Ph. (1997). Theory and algorithms for linear optimization: An interior point approach. Chichester, UK: John Wiley & Sons).

    Google Scholar 

  • Santos, F. (2010). A counterexample to the Hirsch conjecture. arXiv:1006.2814.

    Google Scholar 

  • Sonnevend, G. y. (1985). An ‘analytic center’ for polyhedrons and new classes of global algorithms for linear (smooth, convex) programming. In A. Prékopa, J. Szelezsán, & B. Strazicky (Eds.), System modeling and optimization : Proceedings of the 12th IFIP-Conference held in Budapest, Hungary, September 1985. Lecture notes in control and information sciences (Vol. 84, pp. 866–876). Berlin, West–Germany: Springer Verlag, 1986.

    Google Scholar 

  • Terlaky, T. (Ed.). (1996). Interior point methods in mathematical programming. Dordrecht, The Netherlands: Kluwer.

    Google Scholar 

  • Todd, M. (1999). A study of search directions in primal-dual interior-point methods for semidefinite programming. Optimization Methods and Software, 11, 1–46.

    Article  Google Scholar 

  • Vandenberghe, L., & Boyd, S. (1996). Semidefinite programming. SIAM Review, 38, 49–95.

    Article  Google Scholar 

  • Wächter, A. (2002). An interior point algorithm for large-scale nonlinear optimization with applications in process engineering. Ph.D. Thesis, Carnegie Mellon University, Pittsburgh, PA, USA.

    Google Scholar 

  • Wächter, A., & Biegler, L. T. (2006). On the implementation of a primal-dual interior point filter line search algorithm for large-scale nonlinear programming. Mathematical Programming, 106(1), 25–57.

    Article  Google Scholar 

  • Wolkowicz, H., Saigal, R., Vandenberghe, L. (Eds.) (2000). Handbook of semidefinite programming: Theory, algorithms, and applications. Kluwer A.P.C.

    Google Scholar 

  • Wright, S. J. (1996). Primal-dual interior-point methods. Philadelphia: SIAM.

    Google Scholar 

  • Wright, M. H. (2004). The interior-point revolution in optimization: History, recent developments, and lasting consequences. Bulletin (New Series) of the American Mathematical Society, 42(1): 39–56.

    Google Scholar 

  • Ye, Y. (1997). Interior point algorithms. New York: John Wiley & Sons.

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tamás Terlaky .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this entry

Cite this entry

Terlaky, T., Boggs, P.T. (2013). Interior-Point Methods for Conic-Linear Optimization. In: Gass, S.I., Fu, M.C. (eds) Encyclopedia of Operations Research and Management Science. Springer, Boston, MA. https://doi.org/10.1007/978-1-4419-1153-7_475

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-1153-7_475

  • Published:

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4419-1137-7

  • Online ISBN: 978-1-4419-1153-7

  • eBook Packages: Business and Economics

Publish with us

Policies and ethics