Skip to main content

Interactive Multiple Objective Mathematical Programming

  • Reference work entry
  • First Online:

Introduction

Decision making typically involves a decision maker selecting a course of action that optimizes some criterion while respecting the resources and other conditions that must be satisfied. When multiple criteria are involved, this class of problems is generally referred to as multiple criteria decision problems. In some circumstances, the number of alternatives is limited and the decision maker identifies a number of (multiple) desirable measureable attributes. Each of the alternatives is assessed with respect to each of the attributes to provide information to the decision maker to aid in selecting the desired alternative. This type of problem is generally termed a multiple attribute decision problem. In other situations, the set of alternatives may be very large and represented as various types and levels of particular actions. The decision maker may be able to determine how various combinations of these alternatives contribute to a particular objective (e.g., completion...

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   799.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   899.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Benayoun, R., de Montgolfier, J., Tergny, J., & Laritchev, O. (1971). Linear programming and multiple objective functions: STEP method (STEM). Mathematical Programming, 1, 366–375.

    Article  Google Scholar 

  • Branke, J., Deb, K., Miettinen, K., & Slowiński, R. (Eds.). (2008). Multiobjective optimization: Interactive and evolving approaches. Berlin/Heidelburg: Springer-Verlag.

    Google Scholar 

  • Buchanan, J. T. (1997). A naïve approach for solving MCDM problems: The GUESS method. Journal of the Operational Research Society, 48, 202–206.

    Article  Google Scholar 

  • Chankong, V., & Haimes, Y. Y. (1978). The interactive surrogate worth trade-off (ISWT) method for multiobjective decision making. In S. Zionts (Ed.), Multi-criteria problem solving (pp. 42–67). Berlin/Heidelberg: Springer-Verlag.

    Chapter  Google Scholar 

  • Chankong, V., & Haimes, Y. Y. (1983). Multiobjective decision making: Theory and methodology. New York: Elsevier/North-Holland.

    Google Scholar 

  • Dyer, J. S. (1972). Interactive goal programming. Management Science, 19, 62–70.

    Article  Google Scholar 

  • Evans, G. W. (1984). An overview of techniques for solving multiobjective mathematical programs. Management Science, 30, 1268–1282.

    Article  Google Scholar 

  • Evans, G. W., Stuckman, B., & Mollaghasemi, M. (1991). Multiple response simulation optimization. In Proceedings of 1991 winter simulation conference, Phoenix, Arizona. pp 894–900.

    Google Scholar 

  • Geoffrion, A. M., Dyer, J. S., & Feinberg, A. (1972). An interactive approach for multicriterion optimization, with an application to the operation of an academic department. Management Science, 19, 357–368.

    Article  Google Scholar 

  • Jaszkiewicz, A., & Slowiński, R. (1994). The light beam search over a non-dominated surface of a multiple objective programming problem. In G. H. Tzeng, H. F. Wand, U. P. Wen, & P. L. Yu (Eds.), Multiple criteria decision making – Proceedings of the tenth international conference, Springer-Verlag, New York, pp 87–99.

    Google Scholar 

  • Korhonen, P. (1987). VIG–a visual interactive support system for multiple criteria decision making. Belgian Journal of Operations Research, Statistics, and Computer Science, 27, 3–15.

    Google Scholar 

  • Korhonen, P., & Laasko, J. (1986). A visual interactive approach for solving the multiple criteria problem. European Journal of Operational Research, 24, 277–287.

    Article  Google Scholar 

  • Loucks, D. P. (1977). An application of interactive multiobjective water resources planning. Interfaces, 8(1), 70–75.

    Article  Google Scholar 

  • Mäkelä, M. M. (1993). Issues of implementing a Fortran subroutine package NSOLIB for nonsmooth optimization, Report 5/1993, University of Jyväskylä, Department of Mathematics, Laboratory of Scientific Computing, Jyväskylä.

    Google Scholar 

  • Miettinen, K. M. (1994). On the methodology of multiobjective optimization with applications, Doctoral thesis, Report 60, University of Jyväskylä, Department of Mathematics, Jyväskylä.

    Google Scholar 

  • Miettinen, K. M. (1999). Nonlinear multiobjective optimization. Boston/London/Dordrecht: Kluwer Academic.

    Google Scholar 

  • Miettinen, K. M., & Mäkelä, M. M. (2006). Synchronous approach in interactive multiobjective optimization. European Journal of Operational Research, 170, 909–922.

    Article  Google Scholar 

  • Mollaghasemi, M., & Pet-Edwards, J. (1997). Making multiple objective decisions. Los Alamitos, CA: IEEE Computer Society Press.

    Google Scholar 

  • Nakayama, H. (1989). Sensitivity and trade-off analysis in multiobjective programming. In A. Lewandowski & I. Stanchev (Eds.), Methodology and software for interactive decision support (Lecture notes in economics and mathematical systems, Vol. 337, pp. 86–93). Berlin: Springer-Verlag.

    Chapter  Google Scholar 

  • Sakawa, M. (1982). Interactive multiobjective decision making by the sequential proxy optimization technique: SPOT. European Journal of Operational Research, 9, 386–396.

    Article  Google Scholar 

  • Steuer, R. E. (1986). Multiple criteria optimization: Theory, computation, and application. New York: Wiley.

    Google Scholar 

  • Steuer, R. E., & Choo, E.-U. (1983). An interactive weighted Tchebycheff procedure for multiple objective programming. Mathematical Programming, 26, 326–344.

    Article  Google Scholar 

  • White, D. J. (1990). A bibliography on the applications of mathematical programming multiple-objective methods. Journal of the Operational Research Society, 41, 669–691.

    Article  Google Scholar 

  • Wierzbicki, A. P. (1982). A mathematical basis for satisficing decision making. Mathematical Modelling, 3, 391–405.

    Article  Google Scholar 

  • Zopounidis, C., & Pardalos, P. M. (2010). Handbook of multicriteria analysis. Berlin/Heidelberg: Springer-Verlag.

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Julia Pet-Armacost .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this entry

Cite this entry

Pet-Armacost, J., Mollaghasemi, M., Armacost, R.L. (2013). Interactive Multiple Objective Mathematical Programming. In: Gass, S.I., Fu, M.C. (eds) Encyclopedia of Operations Research and Management Science. Springer, Boston, MA. https://doi.org/10.1007/978-1-4419-1153-7_471

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-1153-7_471

  • Published:

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4419-1137-7

  • Online ISBN: 978-1-4419-1153-7

  • eBook Packages: Business and Economics

Publish with us

Policies and ethics