Encyclopedia of Operations Research and Management Science

2013 Edition
| Editors: Saul I. Gass, Michael C. Fu

Interactive Multiple Objective Mathematical Programming

  • Julia Pet-Armacost
  • Mansooreh Mollaghasemi
  • Robert L. Armacost
Reference work entry
DOI: https://doi.org/10.1007/978-1-4419-1153-7_471

Introduction

Decision making typically involves a decision maker selecting a course of action that optimizes some criterion while respecting the resources and other conditions that must be satisfied. When multiple criteria are involved, this class of problems is generally referred to as multiple criteria decision problems. In some circumstances, the number of alternatives is limited and the decision maker identifies a number of (multiple) desirable measureable attributes. Each of the alternatives is assessed with respect to each of the attributes to provide information to the decision maker to aid in selecting the desired alternative. This type of problem is generally termed a multiple attribute decision problem. In other situations, the set of alternatives may be very large and represented as various types and levels of particular actions. The decision maker may be able to determine how various combinations of these alternatives contribute to a particular objective (e.g., completion...

This is a preview of subscription content, log in to check access.

References

  1. Benayoun, R., de Montgolfier, J., Tergny, J., & Laritchev, O. (1971). Linear programming and multiple objective functions: STEP method (STEM). Mathematical Programming, 1, 366–375.CrossRefGoogle Scholar
  2. Branke, J., Deb, K., Miettinen, K., & Slowiński, R. (Eds.). (2008). Multiobjective optimization: Interactive and evolving approaches. Berlin/Heidelburg: Springer-Verlag.Google Scholar
  3. Buchanan, J. T. (1997). A naïve approach for solving MCDM problems: The GUESS method. Journal of the Operational Research Society, 48, 202–206.CrossRefGoogle Scholar
  4. Chankong, V., & Haimes, Y. Y. (1978). The interactive surrogate worth trade-off (ISWT) method for multiobjective decision making. In S. Zionts (Ed.), Multi-criteria problem solving (pp. 42–67). Berlin/Heidelberg: Springer-Verlag.CrossRefGoogle Scholar
  5. Chankong, V., & Haimes, Y. Y. (1983). Multiobjective decision making: Theory and methodology. New York: Elsevier/North-Holland.Google Scholar
  6. Dyer, J. S. (1972). Interactive goal programming. Management Science, 19, 62–70.CrossRefGoogle Scholar
  7. Evans, G. W. (1984). An overview of techniques for solving multiobjective mathematical programs. Management Science, 30, 1268–1282.CrossRefGoogle Scholar
  8. Evans, G. W., Stuckman, B., & Mollaghasemi, M. (1991). Multiple response simulation optimization. In Proceedings of 1991 winter simulation conference, Phoenix, Arizona. pp 894–900.Google Scholar
  9. Geoffrion, A. M., Dyer, J. S., & Feinberg, A. (1972). An interactive approach for multicriterion optimization, with an application to the operation of an academic department. Management Science, 19, 357–368.CrossRefGoogle Scholar
  10. Jaszkiewicz, A., & Slowiński, R. (1994). The light beam search over a non-dominated surface of a multiple objective programming problem. In G. H. Tzeng, H. F. Wand, U. P. Wen, & P. L. Yu (Eds.), Multiple criteria decision making – Proceedings of the tenth international conference, Springer-Verlag, New York, pp 87–99.Google Scholar
  11. Korhonen, P. (1987). VIG–a visual interactive support system for multiple criteria decision making. Belgian Journal of Operations Research, Statistics, and Computer Science, 27, 3–15.Google Scholar
  12. Korhonen, P., & Laasko, J. (1986). A visual interactive approach for solving the multiple criteria problem. European Journal of Operational Research, 24, 277–287.CrossRefGoogle Scholar
  13. Loucks, D. P. (1977). An application of interactive multiobjective water resources planning. Interfaces, 8(1), 70–75.CrossRefGoogle Scholar
  14. Mäkelä, M. M. (1993). Issues of implementing a Fortran subroutine package NSOLIB for nonsmooth optimization, Report 5/1993, University of Jyväskylä, Department of Mathematics, Laboratory of Scientific Computing, Jyväskylä.Google Scholar
  15. Miettinen, K. M. (1994). On the methodology of multiobjective optimization with applications, Doctoral thesis, Report 60, University of Jyväskylä, Department of Mathematics, Jyväskylä.Google Scholar
  16. Miettinen, K. M. (1999). Nonlinear multiobjective optimization. Boston/London/Dordrecht: Kluwer Academic.Google Scholar
  17. Miettinen, K. M., & Mäkelä, M. M. (2006). Synchronous approach in interactive multiobjective optimization. European Journal of Operational Research, 170, 909–922.CrossRefGoogle Scholar
  18. Mollaghasemi, M., & Pet-Edwards, J. (1997). Making multiple objective decisions. Los Alamitos, CA: IEEE Computer Society Press.Google Scholar
  19. Nakayama, H. (1989). Sensitivity and trade-off analysis in multiobjective programming. In A. Lewandowski & I. Stanchev (Eds.), Methodology and software for interactive decision support (Lecture notes in economics and mathematical systems, Vol. 337, pp. 86–93). Berlin: Springer-Verlag.CrossRefGoogle Scholar
  20. Sakawa, M. (1982). Interactive multiobjective decision making by the sequential proxy optimization technique: SPOT. European Journal of Operational Research, 9, 386–396.CrossRefGoogle Scholar
  21. Steuer, R. E. (1986). Multiple criteria optimization: Theory, computation, and application. New York: Wiley.Google Scholar
  22. Steuer, R. E., & Choo, E.-U. (1983). An interactive weighted Tchebycheff procedure for multiple objective programming. Mathematical Programming, 26, 326–344.CrossRefGoogle Scholar
  23. White, D. J. (1990). A bibliography on the applications of mathematical programming multiple-objective methods. Journal of the Operational Research Society, 41, 669–691.CrossRefGoogle Scholar
  24. Wierzbicki, A. P. (1982). A mathematical basis for satisficing decision making. Mathematical Modelling, 3, 391–405.CrossRefGoogle Scholar
  25. Zopounidis, C., & Pardalos, P. M. (2010). Handbook of multicriteria analysis. Berlin/Heidelberg: Springer-Verlag.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Julia Pet-Armacost
    • 1
  • Mansooreh Mollaghasemi
    • 2
  • Robert L. Armacost
    • 2
  1. 1.College of MedicineUniversity of Central FloridaOrlandoUSA
  2. 2.Department of Industrial Engineering and Management SystemsUniversity of Central FloridaOrlandoUSA