Skip to main content

Definition of the Subject and Its Importance

Harmful algal blooms (HABs) pose threats to the environment, public health, and a variety of commercial interests and industries. A single bloom can lead to devastating outcomes, including large mortalities of marine organisms (e.g., fish kills); toxic contamination of filter-feeding organisms such as bivalve shellfish that subsequently enter the market for distribution to consumers; economic hardships for fisheries, aquaculture, and recreational- and tourism-related industries; and a compromised quality of life for people living or working along affected shorelines. Depending upon the size of the bloom, its duration, and the number and types of impacts produced, a single bloom can generate multimillion-dollar losses spanning from local to international economies (see Oceans and Human Health, Social and Economic Impacts for additional information on HAB-related economic impacts).

As well as a current concern, the issue of HABs will continue...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 6,999.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

Bioaccumulation:

The retention of substances, various phycotoxins in this context, in the living tissues of organisms at concentrations that are higher than are found in the environment.

Cyanobacteria:

A phylum of bacteria, once called blue-green algae, that appears in the fossil record as far back as 3.5 billion years all species are photosynthetic, but different species have adapted to aquatic (fresh or marine) or terrestrial (soil, bare rock, or symbiotic associations with plants) environments some species can form colonies, and some colony-forming cells can specialize or differentiate, e.g., to form nitrogen-fixing heterocysts.

Depuration:

The cleansing or purification of impurities (toxins) from the tissues of the body.

Diatoms:

A large group of microalgae distinguished by having siliceous cell walls called frustules single cells range in size from 2 μm to over 2 mm and are unicellular, often forming colonies of many cells they contain the pigments chlorophylls a and c, betacarotene, fucoxanthin, diatoxanthin, and diadinoxanthin they constitute the predominant fraction of the phytoplankton community in fresh water and marine environments, found in the water column and in the benthos, being both epiphytic and edaphic.

Dinoflagellates:

A large group of motile microalgae differentiated from other algal groups by their thecal morphology (cell covering) having either an armored form or a smooth form armored forms contain distinctly ornamented polysaccharide plates they contain two dissimilar flagellae, and species may be exclusively heterotrophic, mixotrophic, or exclusively phototrophic – those that are capable of photosynthesis contain the pigments chlorophylls a and c, dinoxanthin, diadinoxanthin, and either fucoxanthin or peridinin as their major carotenoid, depending upon the species.

Eutrophication:

The introduction of excessive levels of nutrients such as nitrates and phosphorous into an aquatic ecosystem.

Harmful algae:

A small fraction of algal species that can have disruptive or devastating effects to an ecosystem, public health, and/or various economies the harmful nature of different species of algae can be manifested in a variety of ways but primarily through the production of one or more phycotoxins.

Phycotoxins:

Toxic molecules produced by harmful algae collectively, these molecules are chemically diverse and can produce an array of effects in intoxicated organisms ranging from gastrointestinal, neurotoxic, hepatotoxic, carcinogenic, and more.

Trophic transfer:

The transfer of energy and/or substances, e.g., toxins, from one (trophic) level of a food chain to another, typically higher, (trophic) level within the food chain.

Bibliography

Primary Literature

  1. Hallegraeff GM (1993) A review of harmful algal blooms and their apparent global increase. Phycologia 32:79–99

    Article  Google Scholar 

  2. Sandifer P et al (2007) Interagency oceans and human health research implementation plan: a prescription for the future. Joint Subcommittee on Ocean Science and Technology. Interagency Working Group on Harmful Algal Blooms, Hypoxia and Human Health, Washington, DC

    Google Scholar 

  3. Smayda TJ (1990) Novel and nuisance phytoplankton blooms in the sea: evidence for a global epidemic. In: Graneli E (ed) Toxic marine phytoplankton. Elsevier, New York, pp 29–40

    Google Scholar 

  4. Smayda TJ (1992) Global epidemic of noxious phytoplankton blooms in the sea: evidence for a global epidemic. In: Sherman K, Alexander LM, Gold BD (eds) Food chains: models and management of large marine ecosystems. Westview Press, San Francisco, pp 275–307

    Google Scholar 

  5. Smayda TJ, White AW (1990) Has there been a global expansion of algal blooms? If so is there a connection with human activities? In: Graneli E (ed) Toxic marine phytoplankton. Elsevier, New York, pp 516–517

    Google Scholar 

  6. Hallegraeff GM (2010) Ocean climate change, phytoplankton community responses, and harmful algal blooms: a formidable predictive challenge. J Phycol 46(2):220–235

    Article  CAS  Google Scholar 

  7. Ramsdell JS, Anderson DM, Glibert PM (eds) (2005) HARRNESS, Harmful algal research and response: a national environmental science strategy 2005–2015. Ecological Society of America, Washington, DC

    Google Scholar 

  8. Lopez CB et al (2008) Scientific assessment of marine harmful algal blooms. Joint Subcommittee on Ocean Science and Technology. Interagency Working Group on Harmful Algal Blooms, Hypoxia and Human Health, Washington, DC

    Google Scholar 

  9. Heisler J et al (2008) Eutrophication and harmful algal blooms: a scientific consensus. Harmful Algae 8(1):3–13

    Article  CAS  Google Scholar 

  10. Anderson DM et al (2008) Harmful algal blooms and eutrophication: examining linkages from selected coastal regions of the United States. Harmful Algae 8(1):39–53

    Article  CAS  Google Scholar 

  11. Huisman JM, Saunders GW (2007) Phylogeny and classification of the algae. In: McCarthy PM, Orchard AE (eds) Algae of Australia: introduction. Australian Biological Resources Study/CSIRO, Melbourne, pp 66–103

    Google Scholar 

  12. Smayda TJ, Reynolds CS (2001) Community assembly in marine phytoplankton: application of recent models to harmful dinoflagellate blooms. J Plankton Res 23(5):447–461

    Article  Google Scholar 

  13. Vargo GA et al (2001) The hydrographic regime, nutrient requirements, and transport of a Gymnodinium breve Davis red tide on the west Florida shelf. In: Hallegraeff GM et al (eds) Harmful algal blooms 2000. Intergovernmental Oceanographic Commission of UNESCO, Paris, pp 157–159

    Google Scholar 

  14. Laws RM (1985) The ecology of the southern ocean. Am Sci 73(1):26–40

    Google Scholar 

  15. Croxall JP, Nicol S (2004) Management of southern ocean fisheries: global forces and future sustainability. Antarct Sci 16(4):559–584

    Article  Google Scholar 

  16. Smayda TJ, Reynolds CS (2003) Strategies of marine dinoflagellate survival and some rules of assembly. J Sea Res 49(2):95–106

    Article  Google Scholar 

  17. Sournia A (1974) Circadian periodicities in natural populations of marine phytoplankton. Mar Biol 12:325–389

    Article  Google Scholar 

  18. Kent ML, Whyte JNC, Latrace C (1995) Gill lesions and mortality in seawater pen-reared Atlantic salmon Salmo-Salar associated with dense bloom of Skeletonema costatum and Thalassiora species. Dis Aquat Organ 22(1):77–81

    Article  Google Scholar 

  19. Bell GR (1961) Penetration of spines from a marine diatom into gill tissue of Lingcod (Ophiodon elongatus). Nature 192(479):279–280

    Article  Google Scholar 

  20. Dagg MJ et al (2007) A review of water column processes influencing hypoxia in the northern Gulf of Mexico. Estuaries Coast 30(5):735–752

    CAS  Google Scholar 

  21. Rabalais NN et al (2002) Nutrient-enhanced productivity in the northern Gulf of Mexico: past, present and future. Hydrobiologia 475(1):39–63

    Article  Google Scholar 

  22. Legrand C et al (2003) Allelopathy in phytoplankton – biochemical, ecological, and evolutionary aspects. Phycologia 42:406–419

    Article  Google Scholar 

  23. Kubanek J et al (2005) Does the red tide dinoflagellate Karenia brevis use allelopathy to outcompete other phytoplankton? Limnol Oceanogr 50(3):883–895

    Article  Google Scholar 

  24. Okaichi T, Nishio S (1976) Identification of ammonia as the toxic principle of red tide of Noctiluca miliaris. Bull Plankton Soc Jpn 23:75–80

    Google Scholar 

  25. Lancelot C et al (2011) Cost assessment and ecological effectiveness of nutrient reduction options for mitigating Phaeocystis colony blooms in the southern North Sea: an integrated modeling approach. Sci Total Environ 409(11):2179–2191

    Article  CAS  Google Scholar 

  26. Ciglenecki I et al (2003) Mucopolysaccharide transformation by sulfide in diatom cultures and natural mucilage. Mar Ecol Prog Ser 263:17–27

    Article  CAS  Google Scholar 

  27. Guiry MD (2011) AlgaeBase. http://www.algaebase.org [cited 10 May 2011]

  28. Daugbjerg N et al (2000) Phylogeny of some of the major genera of dinoflagellates based on ultrastructure and partial LSU rDNA sequence data, including the erection of three new genera of unarmoured dinoflagellates. Phycologia 39:302–317

    Article  Google Scholar 

  29. Scholin CA, Anderson DM (1994) Identification of group-specific and strain-specific genetic-markers for globally distributed Alexandrium (Dinophyceae). 1. RFLP Analysis of SSU ribosomal-RNA genes. J Phycol 30(4):744–754

    Article  CAS  Google Scholar 

  30. Scholin CA, Anderson DM (1996) LSU rDNA-based RFLP assays for discriminating species and strains of Alexandrium (Dinophyceae). J Phycol 32(6):1022–1035

    Article  CAS  Google Scholar 

  31. Scholin CA, Hallegraeff GM, Anderson DM (1995) Molecular evolution of the Alexandrium tamarense species complex (Dinophyceae)-dispersal in the North American and West Pacific regions. Phycologia 34:472–485

    Article  Google Scholar 

  32. Scholin CA et al (1994) Identification of group-specific and strain-specific genetic-markers for globally distributed Alexandrium (Dinophyceae) 2 sequence-analysis of a fragment of the Lsu ribosomal-RNA gene. J Phycol 30(6):999–1011

    Article  CAS  Google Scholar 

  33. Lilly EL, Halanych KM, Anderson DM (2007) Species boundaries and global biogeography of the Alexandrium tamarense complex (Dinophyceae). J Phycol 43:1329–1338

    Article  CAS  Google Scholar 

  34. Kalaitzis JA et al (2010) Biosynthesis of toxic naturally-occurring seafood contaminants. Toxicon 56:244–258

    Article  CAS  Google Scholar 

  35. Etheridge SM (2010) Paralytic shellfish poisoning: seafood safety and human health perspectives. Toxicon 56:108–122

    Article  CAS  Google Scholar 

  36. Oshima Y, Blackburn SI, Hallegraeff GM (1993) Comparative study on paralytic shellfish toxin profiles of the dinoflagellate Gymnodinium catenatum from three different countries. Mar Biol 116:471–476

    Article  CAS  Google Scholar 

  37. Hall S et al (1990) The saxitoxins: sources, chemistry, and pharmacology. In: Hall S, Strichartz G (eds) Marine toxins: origins, structure, and molecular pharmacology. American Chemical Society, Washington, DC

    Chapter  Google Scholar 

  38. Hille B (1992) Ionic channels of excitable membranes, 2nd edn. Sinauer, Sunderland

    Google Scholar 

  39. Ritchie JM, Rogart RB (1977) The binding of saxitoxin and tetrodotoxin to excitable tissue. Rev Physiol Biochem Pharmacol 79:42–50

    Google Scholar 

  40. Kao CY et al (1967) Vasomotor and respiratory depressant actions of tetrodotoxin and saxitoxin. Arch Int Pharmacodyn Ther 165:438–450

    CAS  Google Scholar 

  41. Kao CY (1993) Paralytic shellfish poisoning. In: Falconer IR (ed) Algal toxins in seafood and drinking water. Academic, London, pp 75–86

    Chapter  Google Scholar 

  42. Doucette G et al (2006) Phycotoxin pathways in aquatic food webs: transfer, accumulation, and degradation. In: Graneli E, Turner JT (eds) Ecology of harmful algae. Springer, Berlin/Heidelberg

    Google Scholar 

  43. Anderson DM, White AW (1989) Toxic dinoflagellates and marine mammal mortalities. Woods Hole Oceanographic Institution Technical Report. WHOI-89-36 (CRC-89-6). Woods Hole Oceanographic Institution, Woods Hole

    Google Scholar 

  44. Geraci JR (1989) Clinical investigations of the 1987–1988 mass mortality of bottlenose dolphins along the US central and south Atlantic coast. In: Final report to the national marine fisheries service. U. S. Navy, Office of Naval Research and Marine Mammal Commission, Ontario Veterinary College, University of Guelph, Guelph, pp 1–63

    Google Scholar 

  45. Geraci JR et al (1989) Humpback whales (Megaptera novaeangliae) fatally poisoned by dinoflagellate toxin. Can J Fish Aquat Sci 46:1895–1898

    Article  Google Scholar 

  46. Shumway SE (1995) Phycotoxin-related shellfish poisoning: bivalve molluscs are not the only vectors. Rev Fish Sci 3:1–31

    Article  Google Scholar 

  47. White AW (1981) Marine zooplankton can accumulate and retain dinoflagellate toxins and cause fish kills. Limnol Oceanogr 26:103–109

    Article  Google Scholar 

  48. Doucette GJ et al (2006) PSP toxins in North Atlantic right whales (Eubalaena glacialis) and their zooplankton prey in the Bay of Fundy. Canada Mar Ecol Prog Ser 306:303–313

    Article  CAS  Google Scholar 

  49. Deeds JR et al (2008) Non-traditional vectors for paralytic shellfish poisoning. Mar Drugs 6:308–348

    Article  CAS  Google Scholar 

  50. Shumway SE (1990) A review of the effects of algal blooms on shellfish and aquaculture. J World Aquacul Soc 21:65–104

    Article  Google Scholar 

  51. RaLonde R (1996) Paralytic shellfish poisoning: the Alaska problem. In: Alaska’s marine resources. Marine Advisory Program, Anchorage

    Google Scholar 

  52. Bricelj VM, Lee JH, Cembella AD (1991) Influence of dinoflagellate cell toxicity on uptake and loss of paralytic shellfish toxins in the northern quahog Mercenaria mercenaria. Mar Ecol Prog Ser 74:33–46

    Article  CAS  Google Scholar 

  53. Reboreda A et al (2010) Decrease in marine toxin content in bivalves by industrial processes. Toxicon 55:235–243

    Article  CAS  Google Scholar 

  54. Trainer VL (2002) Harmful algal blooms on the U.S. west coast. In: Taylor FJ, Trainer VL (eds) Harmful algal blooms in the PICES region of the North Pacific. PICES Scientific Report No. 23. North Pacific Marine Science Organization, Sidney, pp 89–118

    Google Scholar 

  55. Nishitani L, Chew KK (1988) PSP toxins in the Pacific coast states: monitoring programs and effects on bivalve industries. J Shellfish Res 7:653–669

    Google Scholar 

  56. Anderson DM et al (2000) Estimated annual economic impacts from harmful algal blooms (HABs) in the US. Woods Hole Oceanographic Institute, Woods Hole

    Book  Google Scholar 

  57. Anderson DM et al (2005) Initial observation of the 2005 Alexandrium fundyense bloom in southern New England: general patterns and mechanisms. Deep Sea Res II 52:2856–2876

    Article  Google Scholar 

  58. Jin D, Thunberg E, Hoagland P (2008) Economic impact of the 2005 red tide event on commercial shellfish fisheries in New England. Ocean Coast Manag 51(5):420–429

    Article  Google Scholar 

  59. Adachi M, Sako Y, Ishida Y (1996) Analysis of Alexandrium (Dinophyceae) species using sequence of the 5.8S ribosomal DNA and internal transcribed spacer regions. J Phycol 32:424–432

    Article  CAS  Google Scholar 

  60. John U, Fensome RA, Medlin LK (2003) The application of a molecular clock based on molecular sequences and fossil record to explain biogeographic distributions within the Alexandrium tamarense “species complex” (Dinophyceae). Mol Biol Evol 20:1015–1027

    Article  CAS  Google Scholar 

  61. Medlin L et al (1998) Sequence comparison links toxic European isolates of Alexandrium tamarense from the Orkney Islands to toxic North American stocks. Eur J Protistol 34:329–335

    Article  Google Scholar 

  62. Hollingworth T, Wekell MM (1990) Paralytic shellfish poison biological method. Final action. In: Hellrich K (ed) Official methods of analysis. AOAC, Arlington, pp 881–882

    Google Scholar 

  63. AOAC (2000) AOAC official method 959.08 paralytic shellfish poison. In: Horwitz W (ed) Official methods of analysis of AOAC international. AOAC International, Arlington

    Google Scholar 

  64. Wekell JC, Hurst J, Lefebvre KA (2004) The origin of the regulatory limits for PSP and ASP toxins in shellfish. J Shellfish Res 23:927–930

    Google Scholar 

  65. Food and Agriculture Organization of the United Nations (2004) Marine biotoxins. Paper 80. FAO Food and Nutrition, Rome, pp 5–52

    Google Scholar 

  66. Jellet JF et al (1992) Paralytic shellfish poison (saxitoxin family) bioassays: automated endpoint determination and standardization of the in vitro tissue culture bioassay and comparison with the standard mouse bioassay. Toxicon 30:1143–1156

    Article  Google Scholar 

  67. Kogure K et al (1988) A tissue culture assay for the tetrodotoxin, saxitoxin, and related toxins. Toxicon 26:191–197

    Article  CAS  Google Scholar 

  68. Shimojo RY, Iwaoka WT (2000) A rapid hemolysis assay for the detection of sodium channel-specific marine toxins. Toxicology 154:1–7

    Article  CAS  Google Scholar 

  69. Davio SR, Fontelo PA (1984) A competitive displacement assay to detect saxitoxin and tetrodotoxin. Anal Biochem 141:199–204

    Article  CAS  Google Scholar 

  70. Doucette GJ et al (1997) Development and preliminary validation of a microtiter plate-based receptor binding assay for paralytic shellfish poisoning toxins. Toxicon 35(5):625–636

    Article  CAS  Google Scholar 

  71. Powell CL, Doucette GJ (1999) A receptor binding assay for paralytic shellfish poisoning toxins: recent advances and applications. Nat Toxins 7:393–400

    Article  CAS  Google Scholar 

  72. Chu FS, Huang X, Wei RD (1990) Enzyme-linked immunosorbent assay for microcystins in blue-green algal blooms. J Assoc Off Anal Chem 73(3):451–456

    CAS  Google Scholar 

  73. Usleber E, Schnieder E, Terplan G (1991) Direct enzyme immunoassay in microtitration plate and test strip format for the detection of saxitoxin in shellfish. Lett Appl Microbiol 13:275

    Article  CAS  Google Scholar 

  74. Bergantin JH, Sevilla F III (2010) Quartz crystal microbalance biosensor for saxitoxin based on immobilized sodium channel receptors. Anal Lett 43(3):476–486

    Article  CAS  Google Scholar 

  75. Metfies K et al (2005) Electrochemical detection of the toxic dinoflagellate Alexandrium ostenfeldii with a DNA-biosensor. Biosens Bioelectron 20(7):1349–1357

    Article  CAS  Google Scholar 

  76. Diercks S, Metfies K, Medlin LK (2008) Development and adaptation of a multiprobe biosensor for the use in a semi-automated device for the detection of toxic algae. Biosens Bioelectron 23:1527–1533

    Article  CAS  Google Scholar 

  77. Fonfria ES et al (2007) Paralytic shellfish poisoning detection by surface plasmon resonance-based biosensors in shellfish matrixes. Anal Chem 79(16):6303–6311

    Article  CAS  Google Scholar 

  78. Chu FS et al (1996) Screening of paralytic shellfish poisoning toxins in naturally occurring samples with three different direct competitive enzyme-linked immunosorbent assays. J Agric Food Chem 44(12):4043–4047

    Article  CAS  Google Scholar 

  79. Garthwaite I et al (2001) Integrated enzyme-linked immunosorbent assay screening system for amnesic, neurotoxic, diarrhetic, and paralytic shellfish poisoning toxins found in New Zealand. J AOAC Int 84:1643–1648

    CAS  Google Scholar 

  80. Kawatsu K et al (2002) Development and application of an enzyme immunoassay based on a monoclonal antibody against gonyautoxin components of paralytic shellfish poisoning toxins. J Food Prot 65(8):1304–1308

    CAS  Google Scholar 

  81. Usleber E et al (2001) Immunoassay methods for paralytic shellfish poisoning toxins. J AOAC Int 84:1649–1656

    CAS  Google Scholar 

  82. Usleber E, Donald M, Straka M (1997) Comparison of enzyme immunoassay and mouse bioassay for determining paralytic shellfish poisoning toxins in shellfish. Food Addit Contam 14(2):193–198

    Article  CAS  Google Scholar 

  83. Gas F et al (2010) One step immunochromatographic assay for the rapid detection of Alexandrium minutum. Biosens Bioelectron 25:1235–1239

    Article  CAS  Google Scholar 

  84. Jellet JF et al (2002) Detection of paralytic shellfish poisoning (PSP) toxins in shellfish tissue using MIST Alert, a new rapid test, in parallel with the regulatory AOAC mouse bioassay. Toxicon 40(10):1407–1425

    Article  Google Scholar 

  85. Costa PR et al (2009) Comparative determination of paralytic shellfish toxins (PSTs) using five different toxin detection methods in shellfish species collected in the Aleutian islands, Alaska. Toxicon 54:313–320

    Article  CAS  Google Scholar 

  86. Oshiro M et al (2006) Paralytic shellfish poisoning surveillance in California using the Jellett Rapid PSP test. Harmful Algae 5:69–73

    Article  CAS  Google Scholar 

  87. Sullivan JJ (1988) Methods of analysis for DSP and PSP toxins in shellfish: a review. J Shellfish Res 7:587–595

    Google Scholar 

  88. Dell’Aversano C, Hess P, Quilliam MA (2005) Hydrophilic interaction liquid chromatography-mass spectrometry analysis of paralytic shellfish poisoning (PSP) toxins. J Chromatogr A1081:190

    Google Scholar 

  89. Oshima Y (1995) Post-column derivation HPLC methods for paralytic shellfish poisons. In: Hallegraeff GM, Anderson DM, Cembella AD (eds) Manual on harmful marine microalgae. IOC of UNESCO, Paris, pp 81–94

    Google Scholar 

  90. Rourke WA et al (2008) Rapid postcolumn methodology for determination of paralytic shellfish toxins in shellfish tissue. J AOAC Int 91(3):589–597

    CAS  Google Scholar 

  91. Thomas K et al (2006) Analysis of PSP toxins by liquid chromatography with postcolumn oxidation and fluorescence detection. In: Henshilwood K et al (eds) Molluscan shellfish safety. The Marine Institute, Galway, pp 132–138

    Google Scholar 

  92. Lawrence JF, Menard C (1991) Liquid chromatographic determination of paralytic shellfish poisons in shellfish after prechromatographic oxidation. J Assoc Off Anal Chem 74:1006–1012

    CAS  Google Scholar 

  93. Lawrence JF et al (1991) A study of ten toxins associated with paralytic shellfish poison using prechromatographic oxidation and liquid chromatography with fluorescence detection. J Assoc Off Anal Chem 74:419–425

    Google Scholar 

  94. Lawrence JF, Niedzwiadek B, Menard C (2004) Quantitative determination of paralytic shellfish poisoning toxins in shellfish using prechromatographic oxidation and liquid chromatography with fluorescence detection: interlaboratory study. J AOAC Int 87(1):83–100

    CAS  Google Scholar 

  95. Quilliam MA, Janecek M, Lawerence JF (1993) Characterization of the oxidation products of paralytic shellfish poisoning toxins by liquid chromatography/mass spectrometry. Rapid Commun Mass Spectrom 6:14–24

    Google Scholar 

  96. Laycock MV et al (1994) Isolation and purification procedures for the preparation of paralytic shellfish poisoning toxin standards. Nat Toxins 2:175–183

    Article  CAS  Google Scholar 

  97. NRC (2003) National Research Council Canada (NRC) – Institute for Marine Biosciences. http://www.nrc-cnrc.gc.ca/eng/ibp/imb.html [cited]

  98. Van De Riet, J et al (2011) Liquid chromatography postcolumn oxidation (PCOX) method for the determination of paralytic shellfish toxins in mussels, clams, oysters, and scallops: collaborative study. J AOAC International 94:1154–1176

    Google Scholar 

  99. Anderson DM (1997) Bloom dynamics of toxic Alexandrium species in the northeastern US. Limnol Oceanogr 42(5 Pt 2):1009–1022

    Article  Google Scholar 

  100. Hurst JW (1975) History of paralytic shellfish poisoning on the Maine coast 1958–1974. In: First international conference on toxic dinoflagellate blooms. Massachusetts Science and Technology Foundation, Wakefield

    Google Scholar 

  101. Anderson DM, Glibert PM, Burkholder JM (2002) Harmful algal blooms and eutrophication: nutrient sources, composition, and consequences. Estuaries 25:704–726

    Article  Google Scholar 

  102. Boesch DF et al (1997) Harmful algal blooms in coastal waters: options for prevention, control, and mitigation. NOAA Coastal Ocean Program Decision Analysis Series No.10. NOAA Coastal Ocean Office, Silver Spring, 46pp + appendix

    Google Scholar 

  103. Mulligan HF (1975) Oceanographic factors associated with New England red tide blooms. In: First international conference on toxic dinoflagellate blooms. Massachusetts Science and Technology Foundation, Wakefield

    Google Scholar 

  104. He R et al (2008) Historic 2005 toxic bloom of Alexandrium fundyense in the western Gulf of Maine: 2. coupled biophysical numerical modeling. J Geophys Res Oceans 113:C07040–C07042

    Article  Google Scholar 

  105. McGillicuddy DJ Jr et al (2005) Mechanisms regulating large-scale seasonal fluctuations in Alexandrium fundyense populations in the Gulf of Maine: results from a physical-biological model. Deep Sea Res II 52:2698–2714

    Article  Google Scholar 

  106. McGillicuddy DJ Jr et al (2003) A mechanism for offshore initiation of harmful algal blooms in the coastal Gulf of Maine. J Plankton Res 25(9):1131–1138

    Article  Google Scholar 

  107. Anderson DM, Taylor CD, Armbrust EV (1987) The effects of darkness and anaerobiosis on dinoflagellate cyst germination. Limnol Oceanogr 32:340–351

    Article  CAS  Google Scholar 

  108. Anderson DM et al (1982) Vertical and horizontal distributions of dinoflagellates cyst in sediments. Limnol Oceanogr 27:757–765

    Article  Google Scholar 

  109. Sinclair GA et al (2006) Nitrate uptake by Karenia brevis. I. Influences of prior environmental exposure and biochemical state on diel uptake of nitrate. Mar Ecol Prog Ser 328:117–124

    Article  CAS  Google Scholar 

  110. Sinclair GA et al (2006) Nitrate uptake by Karenia brevis. II. Behavior and uptake physiology in a nitrate-depleted mesocosm with a bottom nutrient source. Mar Ecol Prog Ser 328:125–131

    Article  CAS  Google Scholar 

  111. Walsh JJ, Steidinger KA (2001) Saharan dust and Florida red tides: the cyanophyte connection. J Geophy Res Oceans 106(C6):11597–11612

    Article  CAS  Google Scholar 

  112. Tester PA, Steidinger KA (1997) Gymnodinium breve red tide blooms: initiation, transport, and consequences of surface circulation. Limnol Oceanogr 42(5):1039–1051

    Article  Google Scholar 

  113. Vargo GA et al (2008) Nutrient availability in support of Karenia brevis blooms on the central West Florida shelf: what keeps Karenia blooming? Cont Shelf Res 28(1):73–98

    Article  Google Scholar 

  114. Baden DG, Mende TJ (1982) Toxicity of 2 toxins from the Florida red tide marine dinoflagellate Ptychodiscus brevis. Toxicon 20(2):457–461

    Article  CAS  Google Scholar 

  115. Flewelling LJ et al (2005) Red tides and marine mammal mortalities. Nature 435(7043):755–756

    Article  CAS  Google Scholar 

  116. Davis CC (1948) Gymnodinium brevis sp. nov a cause of discolored water and animal mortality in the Gulf of Mexico. Bot Gaz 109(3):358–360

    Article  Google Scholar 

  117. Fire SE et al (2008) Prevalence of brevetoxins in prey fish of bottlenose dolphins in Sarasota Bay, Florida. Mar Ecol Prog Ser 368:283–294

    Article  Google Scholar 

  118. Kirkpatrick B et al (2010) Inland transport of aerosolized Florida red tide toxins. Harmful Algae 9(2):186–189

    Article  CAS  Google Scholar 

  119. Kirkpatrick B et al (2006) Environmental exposures to Florida red tides: effects on emergency room respiratory diagnoses admissions. Harmful Algae 5(5):526–533

    Article  Google Scholar 

  120. Zaias J et al (2011) Repeated exposure to aerosolized brevetoxin-3 induces prolonged airway hyperresponsiveness and lung inflammation in sheep. Inhal Toxicol 23(4):205–211

    Article  CAS  Google Scholar 

  121. Hetland RD, Campbell L (2007) Convergent blooms of Karenia brevis along the Texas coast. Geophys Res Lett 34(19):5

    Article  Google Scholar 

  122. Flewelling LJ et al (2010) Brevetoxins in sharks and rays (Chondrichthyes, Elasmobranchii) from Florida coastal waters. Mar Biol 157(9):1937–1953

    Article  CAS  Google Scholar 

  123. Gannon DP et al (2009) Effects of Karenia brevis harmful algal blooms on nearshore fish communities in southwest Florida. Mar Ecol Prog Ser 378:171–186

    Article  Google Scholar 

  124. Kirkpatrick B et al (2004) Literature review of Florida red tide: implications for human health effects. Harmful Algae 3(2):99–115

    Article  Google Scholar 

  125. Backer LC et al (2003) Recreational exposure to aerosolized brevetoxins during Florida red tide events. Harmful Algae 2(1):19–28

    Article  CAS  Google Scholar 

  126. Fleming LE et al (2005) Initial evaluation of the effects of aerosolized Florida red tide toxins (Brevetoxins) in persons with asthma. Environ Health Perspect 113(5):650–657

    Article  CAS  Google Scholar 

  127. Steidinger KA et al (1999) Harmful algal blooms in Florida. Unpublished technical report submitted to the Florida Harmful Algal Bloom Task Force. Florida Marine Research Institute, St. Petersburg, p 63

    Google Scholar 

  128. Hoagland P et al (2009) The costs of respiratory illnesses arising from Florida gulf coast Karenia brevis blooms. Environ Health Perspect 117(8):1239–1243

    Google Scholar 

  129. Morgan KL, Larkin SL, Adams CM (2010) Red tides and participation in marine-based activities: estimating the response of Southwest Florida residents. Harmful Algae 9(3):333–341

    Article  Google Scholar 

  130. Morgan KL, Larkin SL, Adams CM (2009) Firm-level economic effects of HABS: a tool for business loss assessment. Harmful Algae 8(2):212–218

    Article  Google Scholar 

  131. Plakas SM, Dickey RW (2010) Advances in monitoring and toxicity assessment of brevetoxins in molluscan shellfish. Toxicon 56(2):137–149

    Article  CAS  Google Scholar 

  132. Stumpf R et al (2008) Hydrodynamic accumulation of Karenia on the west coast of Florida. Cont Shelf Res 28:189–213

    Article  Google Scholar 

  133. Sinclair G (2008) Environmental, behavioral, and physiological constraints on the persistence of near-bottom populations of Karenia brevis. Department of marine, earth, and atmospheric sciences, North Carolina State University, Raleigh, p 181

    Google Scholar 

  134. Schofield O et al (1999) Optical monitoring and forecasting systems for harmful algal blooms: possibility or pipe dream? J Phycol 35(6):1477–1496

    Article  CAS  Google Scholar 

  135. Janowitz GS, Kamykowski D (2006) Modeled Karenia brevis accumulation in the vicinity of a coastal nutrient front. Mar Ecol Prog Ser 314:49–59

    Article  Google Scholar 

  136. Liu G, Janowitz G, Kamykowski D (2001) Influence of environmental nutrient conditions on Gymnodinium breve (Dinophyceae) population dynamics: a numerical study. Mar Ecol Prog Ser 213:13–37

    Article  CAS  Google Scholar 

  137. Janowitz GS, Kamykowski D (1999) An expanded eularian model of phytoplankton environmental response. Ecol Model 118:237–247

    Article  CAS  Google Scholar 

  138. Van Dolah FM, Leighfield TA (1999) Diel phasing of the cell-cycle in the Florida red tide dinoflagellate, Gymnodinium breve. J Phycol 35(6):1404–1411

    Article  Google Scholar 

  139. Kamykowski D, Milligan EJ, Reed RE (1998) Biochemical relationships with the orientation of the autotrophic dinoflagellate Gymnodinium breve under nutrient replete conditions. Mar Ecol Prog Ser 167:105–117

    Article  CAS  Google Scholar 

  140. Kamykowski D, Yamazaki H (1997) A study of metabolism-influence orientation in the diel vertical migration of marine dinoflagellates. Limnol Oceanogr 42(5):1189–1202

    Article  Google Scholar 

  141. Dragovich A, Finucane J, Mays B (1961) Counts of red tide organisms, Gymnodinium breve and associated oceanographic data from Florida west coast, 1957–1959. In: U.S. Fish and Wildlife Service, Special. Science Report on Fish, Washington, DC, 175p

    Google Scholar 

  142. Steidinger KA et al (1998) Bloom dynamics and physiology of Gymnodinium breve with emphasis on the Gulf of Mexico. In: Anderson DM, Cembella AD, Hallegraeff GM (eds) Physiological ecology of harmful algal blooms. Springer, Berlin, pp 133–153

    Google Scholar 

  143. Masserini RT, Fanning KA (2000) A sensor package for the simultaneous determination of nanomolar concentrations of nitrite, nitrate, and ammonia in seawater by fluorescence detection. Mar Chem 68(4):323–333

    Article  CAS  Google Scholar 

  144. Hecky RE, Kilham P (1988) Nutrient Limitation of phytoplankton in freshwater and marine environments: a review on the effects of enrichment. Limnol Oceanogr 33(4):796–822

    Article  CAS  Google Scholar 

  145. Walsh J, Steidinger K (2001) Saharan dust and Florida red tides: the cyanophyte connection. J Geophys Res 106(C6):11,597–11,612

    Article  CAS  Google Scholar 

  146. Mulholland MR et al (2006) Nitrogen fixation and release of fixed nitrogen by Trichodesmium spp. in the Gulf of Mexico. Limnol Oceanogr 51(4):1762–1776

    Article  CAS  Google Scholar 

  147. Lester KM et al (2008) Zooplankton and Karenia brevis in the Gulf of Mexico. Cont Shelf Res 28(1):99–111

    Article  Google Scholar 

  148. Sinclair GA, Kamykowski D (2008) Benthic-pelagic coupling in sediment-associated populations of Karenia brevis. J Plankton Res 30(7):829–838

    Article  CAS  Google Scholar 

  149. Janowitz GS, Kamykowski D, Liu G (2008) A three-dimensional wind and behaviorally driven population dynamics model for Karenia brevis. Cont Shelf Res 28(1):177–188

    Article  Google Scholar 

  150. Hasle GR (2002) Are most of the domoic acid-producing species of the diatom genus Pseudo-nitzschia cosmopolites? Harmful Algae 1:137–146

    Article  Google Scholar 

  151. Smetacek V et al (2002) Mesoscale distribution of dominant diatom species relative to the hydrographical field along the Antarctic polar front. Deep-Sea Res II 49:3835–3848

    Article  CAS  Google Scholar 

  152. Fryxell GA, Villac MC, Shapiro LP (1997) The occurrence of the toxic diatom genus Pseudo-nitzschia (Bacillariophyceae) on the West Coast of the USA, 1920–1996: a review. Phycologia 36:419–437

    Article  Google Scholar 

  153. Qi Y, Wang J, Zheng L (1994) The taxonomy and bloom ecology of Pseudo-nitzschia on the coasts of China. In: IOC-WESTPAC third international scientific symposium, Bali, pp 88–95

    Google Scholar 

  154. Zou JZ, Zhou MJ, Zhang C (1993) Ecological features of toxic Nitzschia pungens Grunow in Chinese coastal waters. In: Smayda TJ, Shimizu Y (eds) Toxic phytoplankton blooms in the sea. Elsevier, Amsterdam

    Google Scholar 

  155. Evans KM et al (2004) Microsatellite marker development and genetic variation in the toxic marine diatom Pseudo-nitzschia multiseries (Bacillariophyceae). J Phycol 40(5):911–920

    Article  CAS  Google Scholar 

  156. Evans KM, Hayes PK (2004) Microsatellite markers for the cosmopolitan marine diatom Pseudo-nitzschia pungens. Mol Ecol Notes 4(1):125–126

    Article  CAS  Google Scholar 

  157. Evans KM, Kuhn SF, Hayes PK (2005) High levels of genetic diversity and low levels of genetic differentiation in North Sea Pseudo-nitzschia pungens (Bacillariophyceae) populations. J Phycol 41(3):506–514

    Article  CAS  Google Scholar 

  158. Hubbard KA, Rocap G, Armbrust EV (2008) Inter- and intraspecific community structure within the diatom genus Pseudo-nitzschia (Bacillariophyceae). J Phycol 44:637–649

    Article  CAS  Google Scholar 

  159. Orsini L et al (2004) Multiple rDNA ITS-types within the diatom Pseudo-nitzschia delicatissima (Bacillariophyceae) and their relative abundances across a spring bloom in the Gulf of Naples. Mar Ecol Prog Ser 271:87–98

    Article  CAS  Google Scholar 

  160. Thessen AE, Bowers HA, Stoecker DK (2009) Intra- and interspecies differences in growth and toxicity of Pseudo-nitzschia while using different nitrogen sources. Harmful Algae 8:792–810

    Article  CAS  Google Scholar 

  161. Bates SS (2000) Domoic-acid-producing diatoms: another genus added. J Phycol 36:978–985

    Article  Google Scholar 

  162. Bates SS et al (1989) Pennate diatom Nizschia pungens as the primary source of domoic acid, a toxin in shellfish from eastern Prince Edward Island, Canada. Can J Fish Aquatic Sci 46:1203–1215

    Article  CAS  Google Scholar 

  163. Lefebvre KA, Robertson A (2010) Domoic acid and human exposure risks: a review. Toxicon 56:218–230

    Article  CAS  Google Scholar 

  164. Teitelbaum J, Carpenter S, Cashman NR (1990) Neurologic sequelae after ingestion of mussels contaminated with domoic acid. N Engl J Med 323:1632–1633

    Google Scholar 

  165. Peng YG et al (1994) Neuroexcitatory and the neurotoxic actions of the amnesic shellfish poison, domoic acid. Neuropharmacol Neurotoxicol 5:981–985

    CAS  Google Scholar 

  166. Gulland FMD et al (2002) Domoic acid toxicity in California sea lions (Zalophus californianus): clinical signs, treatment and survival. Vet Rec 150:475–480

    Article  CAS  Google Scholar 

  167. Perl TM et al (1990) An outbreak of toxic encephalopathy caused by eating mussels contaminated with domoic acid. N Engl J Med 322:1775–1780

    Article  CAS  Google Scholar 

  168. Todd ECD (1993) Domoic acid and amnesic shellfish poisoning: a review. J Food Prot 56:69–83

    CAS  Google Scholar 

  169. Wright JLC et al (1989) Identification of domoic acid, a neuroexcitatory amino acid, in toxic mussels from eastern Prince Edward Island. Can J Chem 67:481–490

    Article  CAS  Google Scholar 

  170. Garrison DL et al (1992) Confirmation of domoic acid production by Pseudo-nitzschia australis (Bacillariophyceae) cultures. J Phycol 28:604–607

    Article  CAS  Google Scholar 

  171. Lefebvre KA et al (2002) Domoic acid in planktivorous fish in relation to toxic Pseudo-nitzschia cell densities. Mar Biol 140:625–631

    Article  CAS  Google Scholar 

  172. Scholin CA et al (2000) Mortality of sea lions along the central California coast linked to a toxic diatom bloom. Nature 403:80–84

    Article  CAS  Google Scholar 

  173. Wekell JC et al (1994) Occurrence of domoic acid in Washington state razor clams (Siliqua patula) during 1991–1993. Nat Toxins 2:197–205

    Article  CAS  Google Scholar 

  174. Fritz L et al (1992) An outbreak of domoic acid poisoning attributed to the pennate diatom Pseudonitzschia australis. J Phycol 28:439–442

    Article  Google Scholar 

  175. Work TM et al (1993) Epidemiology of DA poisoning in brown pelicans (Pelecanus occidentalis) and Brandt’s cormorants (Phalacrocarax penicillatus) in California. J Zoo Wildl Med 24:54–62

    Google Scholar 

  176. Sierra-Beltran AP et al (1997) Sea bird mortality at Cabo San Lucas, Mexico: evidence that toxic diatom blooms are spreading. Toxicon 35:447–453

    Article  CAS  Google Scholar 

  177. Sierra-Beltran AP et al (1998) An overview of the marine food poisoning in Mexico. Toxicon 36:1493–1502

    Article  CAS  Google Scholar 

  178. Lefebvre KA et al (1999) Detection of domoic acid in northern anchovies and California sea lions associated with an unusual mortality event. Nat Toxins 7(3):85–92

    Article  CAS  Google Scholar 

  179. Goldstein T et al (2008) Novel symptomatology and changing epidemiology of domoic acid toxicosis in California sea lions (Zalophus californianus): an increasing risk to marine mammal health. Proc R Soc Biol Sci Ser B 275:267–276

    Article  CAS  Google Scholar 

  180. Maucher JM, Ramsdell JS (2005) Domoic acid transfer to milk: evaluation of a potential route of neonatal exposure. Environ Health Perspect 115:1743–1746

    Article  CAS  Google Scholar 

  181. Grattan LM et al (2007) Domoic acid neurotoxicity in native Americans in the pacific northwest: human health project methods and update. In: Fourth symposium on harmful algae in the US, Woods Hole

    Google Scholar 

  182. Trainer VL et al (2007) Recent domoic acid closures of shellfish harvest areas in Washington State inland waters. Harmful Algae 6:449–459

    Article  CAS  Google Scholar 

  183. Trainer VL, Hickey BM, Horner RA (2002) Biological and physical dynamics of domoic acid production off the Washington coast. Limnol Oceanogr 47:1438–1446

    Article  CAS  Google Scholar 

  184. Dyson K, Huppert DD (2010) Regional economic impacts of razor clam beach closures due to harmful algal blooms (HABs) on the Pacific coast of Washington. Harmful Algae 9:264–271

    Article  Google Scholar 

  185. Bill BD et al (2006) The first closure of shellfish harvesting due to domoic acid in Puget Sound, Washington, USA. Afr J Mar Sci 28:437–442

    Article  Google Scholar 

  186. Ayers D, Reed H (2004) Managing important recreational and commercial shellfish fisheries around harmful algal blooms. In: 2003 Georgia Basin/Puget sound research conference, Olympia

    Google Scholar 

  187. Hasle GR, Syvertsen EE (1997) Marine Diatoms. In: Tomas CR (ed) Identifying marine diatoms and dinoflagellates. Academic, San Diego

    Google Scholar 

  188. Hasle GR, Lundholm N (2005) Pseudo-nitzschia seriata f. obtusa (Bacillariophyceae) raised in rank based on morphological, phylogenetic and distributional data. Phycologia 44:608–619

    Article  Google Scholar 

  189. Lundholm N et al (2003) A study of the Pseudo-nitzschia pseudodelicatissima/cuspidata complex (Bacillariophyceae): what is P. pseudodelicatissima? J Phycol 39:797–813

    Article  Google Scholar 

  190. Lundholm N et al (2006) Inter- and intraspecific variation of the Pseudo-nitzschia delicatissima complex (Bacillariophyceae) illustrated by rRNA probes, morphological data and phylogenetic analyses. J Phycol 42(2):464–481

    Article  CAS  Google Scholar 

  191. Fritz L (1992) The use of cellular probes in studying marine phytoplankton. Korean J Phycol 7:319–324

    Google Scholar 

  192. Rhodes LL (1998) Identification of potentially toxic Pseudo-nitzschia (Bacillariophyceae) in New Zealand coastal waters, using lectins. N Z J Mar Freshw Res 32:537–544

    Article  CAS  Google Scholar 

  193. Rhodes LL et al (1998) Domoic acid producing Pseudo-nitzschia species educed by whole cell DNA probe-based and immunochemical assays. In: Reguera B et al (eds) Harmful algae. Xunta de Galicia and IOC of UNESCO, Santiago de Compostela, pp 274–277

    Google Scholar 

  194. Cho ES et al (1999) The rapid differentiation of toxic Alexandrium and Pseudo-nitzschia species using fluorescent lectin probes. J Korean Soc Oceanogr 35:167–171

    Google Scholar 

  195. Fraga S et al (1998) Pseudo-nitzschia species isolated from Galician waters: toxicity, DNA content and lectin binding assay. In: Harmful algae: eighth international conference on harmful algae, Vigo, pp 270–273

    Google Scholar 

  196. Rhodes L, Scholin C, Garthwaite I (1998) Pseudo-nitzschia in New Zealand and the role of DNA probes and immunoassays in refining marine biotoxin monitoring programmes. Nat Toxins 6:105–111

    Article  CAS  Google Scholar 

  197. Andree KB et al (2011) Quantitative PCR coupled with melt curve analysis for detection of selected Pseudo-nitzschia spp. (Bacillariophyceae) from the northwestern Mediterranean Sea. Appl Environ Microbiol 77(5):1651–1659

    Article  CAS  Google Scholar 

  198. Cho ES, Kodaki Y, Park JG (2001) The comparison of two strains of toxic Pseudo-nitzschia multiseries (Hasle) Hasle and non-toxic Pseudo-nitzschia pungens (Grunow) Hasle isolated from Chinhae Bay, Korea. Algae 16:275–285

    Google Scholar 

  199. Lundholm N et al (2002) Morphology, phylogeny and taxonomy of species within Pseudo-nitzschia americana complex (Bacillariophyceae) with descriptions of two new species, Pseudo-nitzschia brasiliana and Pseudo-nitzschia linea. Phycologia 41:480–497

    Article  Google Scholar 

  200. Manhart JR et al (1995) Pseudo-nitzschia pungens and P. multiseries (Bacillariophyceae): nuclear ribosomal DNA’s and species differences. J Phycol 31:421–427

    Article  CAS  Google Scholar 

  201. McDonald SM, Sarno D, Zingone A (2007) Identifying Pseudo-nitzschia species in natural samples using genus-specific PCR primers and clone libraries. Harmful Algae 6(8):849–860

    Article  CAS  Google Scholar 

  202. Miller P, Scholin CA (1996) Identification of cultured Pseudo-nitzschia (Bacillariophyceae) using species specific LSU rRNA-targeted probes. J Phycol 32:646–655

    Article  CAS  Google Scholar 

  203. Miller P, Scholin CA (1998) Identification and enumeration of cultured and wild Pseudo-nitzschia (Bacillariophyceae) using species specific LSU rRNA-targeted fluorescent probes and filter-based whole cell hybridization. J Phycol 34:371–382

    Article  CAS  Google Scholar 

  204. Scholin CA et al (1996) Identification of Pseudo-nitzschia australis (Bacillariophyceae) using rRNA-targeted probes in whole cell and sandwich hybridization formats. Phycologia 35:190–197

    Article  Google Scholar 

  205. Scholin CA et al (1999) DNA probes and a receptor-binding assay for detection of Pseudo-nitzschia (Bacillariophyceae) species and domoic acid activity in cultured and natural samples. J Phycol 35:1356–1367

    Article  CAS  Google Scholar 

  206. Scholin CA et al (1997) Detection and quantification of Pseudo-nitzschia australis in cultured and natural populations using LSU rRNA-targeted probes. Limnol Oceanogr 42:1265–1272

    Article  CAS  Google Scholar 

  207. Scholin CA et al (1994) Ribosomal DNA sequences discriminate among toxic and non-toxic Pseudo-nitzschia species. Nat Toxins 2:152–165

    Article  CAS  Google Scholar 

  208. Cho ES et al (2002) Monthly monitoring of domoic acid producer Pseudo-nitzschia multiseries (Hasle) Hasle using species-specific DNA probes and WGA lectins and abundance of Pseudo-nitzschia species (Bacillariophyceae) from Chinhae Bay, Korea. Bot Mar 45:364–372

    Article  CAS  Google Scholar 

  209. Orsini L et al (2002) Toxic Pseudo-nitzschia multistriata (Bacillariophyceae) from the Gulf of Naples: morphology, toxin analysis and phylogenetic relationships with other Pseudo-nitzschia species. Eur J Phycol 37:247–257

    Article  Google Scholar 

  210. Parsons ML et al (1999) Pseudo-nitzschia species (Bacillariophyceae) in Louisiana coastal waters: molecular probes field trials, genetic variability, and domoic acid analyses. J Phycol 35:1368–1378

    Article  Google Scholar 

  211. Vrieling EG et al (1996) Identification of a domoic acid-producing Pseudo-nitzschia species (Bacillariophyceae) in the Dutch Wadden sea with electron microscopy and molecular probes. Eur J Phycol 31:333–340

    Article  Google Scholar 

  212. Greenfield D et al (2008) Field applications of the second-generation environmental sample processor (ESP) for remote detection of harmful algae: 2006–2007. Limnol Oceanogr Method 6:667–679

    Article  CAS  Google Scholar 

  213. Greenfield DI et al (2006) Application of the environmental sample processor (ESP) methodology for quantifying Pseudo-nitzschia australis using ribosomal RNA-targeted probes in sandwich and fluorescent in situ hybridization. Limnol Oceanogr Method 4:426–435

    Article  Google Scholar 

  214. Scholin C et al (2009) Remote detection of marine microbes, small invertebrates, harmful algae and biotoxins using the environmental sample processor (ESP). Oceanography 22:158–167

    Article  Google Scholar 

  215. AOAC (1990) Paralytic shellfish poison. Biological method. Final action. In: Hellrich K (ed) Official method of analysis. Association of Official Analytical Chemists (AOAC), Arlington, pp 881–882

    Google Scholar 

  216. Van Dolah FM et al (1997) A microplate receptor assay for the amnesic shellfish poisoning toxin, domoic acid, utilizing a cloned glutamate receptor. Anal Biochem 245:102–105

    Article  Google Scholar 

  217. Garthwaite I et al (1998) An immunoassay for determination of domoic acid in shellfish and sea water. In: Reguera B et al (eds) Harmful algae. Xunta de Galicia and IOC of UNESCO, Santiago de Compostela, pp 559–562

    Google Scholar 

  218. Kawatsu K, Hamano Y, Noguchi T (1999) Production and characterization of a monoclonal antibody against domoic acid and its application to enzyme immunoassay. Toxicon 37:1579–1589

    Article  CAS  Google Scholar 

  219. Smith DS, Kitts DD (1994) A competitive enzyme-linked immunoassay for domoic acid determination in human body fluids. Food Chem Toxicol 32(12):1147–1154

    Article  CAS  Google Scholar 

  220. Smith DS, Kitts DD (1995) Enzyme Immunoassay for the determination of domoic acid in mussel extracts. J Agric Food Chem 43:367–371

    Article  CAS  Google Scholar 

  221. Fernandez ML, Cembella AD (1995) Part B. Mammalian bioassays. In: Hallegraeff GM, Anderson DM, Cembella AD (eds) Manual on harmful marine microalgae. UNESCO, Paris, pp 213–228

    Google Scholar 

  222. Lawrence JF et al (1989) Liquid chromatographic determination of domoic acid in shellfish products using the paralytic shellfish extraction procedure of the association of official analytical chemists. J Chromatogr 462:349–356

    Article  CAS  Google Scholar 

  223. Lawrence JF, Charbonneau CF, Menard C (1991) Liquid chromatographic determination of domoic acid in mussels, using AOAC paralytic shellfish poison extraction procedures: collaborative study. J Assoc Off Anal Chem 74(1):68–72

    CAS  Google Scholar 

  224. Ciminiello P et al (2005) Hydrophilic interaction liquid chromatography/mass spectrometry for determination of domoic acid in Adriatic shellfish. Rapid Commun Mass Spectrom 19(4):2030–2038

    Article  CAS  Google Scholar 

  225. Hummert C, Reichelt M, Luckas B (1997) Automatic HPLC-UV determination of domoic acid in mussels and algae. Chromatographia 45:284–288

    Article  CAS  Google Scholar 

  226. Quilliam MA et al (1989) High-performance liquid-chromatography of domoic acid, a marine neurotoxin, with application to shellfish and plankton. Int J Environ Anal Chem 36:139–154

    Article  CAS  Google Scholar 

  227. European Union Reference Laboratory for Marine Biotoxins (ed) (2010) Standard operating procedure for determination of domoic acid (ADP toxins) in molluscs by UPLC-MS. European Union Reference Laboratory for Marine Biotoxins/Agencia Espanola de Seguridad Alimentaria y Nutricion, Vigo

    Google Scholar 

  228. Rafuse C et al (2004) Rapid monitoring of toxic phytoplankton and zooplankton with a lateral-flow immunochromatographic assay for ASP and PSP toxins. In: Steidinger KA (ed) Harmful algae. Florida Fish and Wildlife Conservation Commission and Intergovernmental Oceanographic Commission of UNESCO, St. Petersburg

    Google Scholar 

  229. Turrell E et al (2008) Detection of Pseudo-nitzschia (Bacillariophyceae) species and amnesic shellfish toxins in Scottish coastal waters using oligonucleotide probes and the Jellet rapid test. Harmful Algae 7(4):443–458

    Article  CAS  Google Scholar 

  230. Parsons ML, Dortch Q, Turner RE (2002) Sedimentological evidence of an increase in Pseudo-nitzschia (Bacillariophyceae) abundance in response to coastal eutrophication. Limnol Oceanogr 47(2):551–558

    Article  Google Scholar 

  231. Dortch Q et al (2000) Pseudo-nitzschia spp. in the northern Gulf of Mexico: overview and response to increasing eutrophication. In: Symposium on harmful marine algae in the U.S. Marine Biological Laboratory, Woods Hole, p 27

    Google Scholar 

  232. McFadyen A, Hickey BM, Foreman MGG (2005) Transport of surface waters from the Juan de Fuca eddy region to the Washington coast. Cont Shelf Res 25:2008–2021

    Article  Google Scholar 

  233. Bates SS et al (1991) Controls on domoic acid production by the diatom Nitzschia pungens f. multiseries in culture: nutrient and irradiance. Can J Fish Aquatic Sci 48:1136–1144

    Article  CAS  Google Scholar 

  234. Pan Y, Subba Rao DV, Mann KH (1996) Changes in domoic acid production and cellular chemical composition of the toxigenic diatom Pseudo-nitzschia multiseries under phosphate limitation. J Phycol 32:371–381

    Article  CAS  Google Scholar 

  235. Pan Y et al (1996) Effects of silicate limitation on production of domoic acid, a neurotoxin, by the diatom Pseudo-nitzschia multiseries. I. Batch culture studies. Mar Ecol Prog Ser 131:225–233

    Article  CAS  Google Scholar 

  236. Pan Y et al (1996) Effects of silicate limitation on production of domoic acid, a neurotoxin, by the diatom Pseudo-nitzschia multiseries. II. Continuous culture studies. Mar Ecol Prog Ser 131:235–243

    Article  CAS  Google Scholar 

  237. Van Apeldoorn ME, van Egmond HP, Speijers GJA (1999) Amnesic shellfish poisoning: a review. In: RIVM report 388802 019. National Institute of Public Health and the Environment, the Netherlands

    Google Scholar 

  238. Maldonado MT, Hughes MP, Rue EL (2002) The effects of Fe and Cu on growth and domoic acid production by Pseudo-nitzschia multiseries and Pseudo-nitzschia australis. Limnol Oceanogr 47:515–526

    Article  CAS  Google Scholar 

  239. de Baar HJW et al (2005) Synthesis of iron fertilization experiments: from the iron age in the age of enlightenment. J Geophys Res Oceans 110:1–24

    Google Scholar 

  240. Marchetti A et al (2008) Identification and assessment of domoic acid production in oceanic Pseudo-nitzschia (Bacillariophyceae) from iron-limited waters in the northeast subartic Pacific. J Phycol 44(3):650–661

    Article  CAS  Google Scholar 

  241. Bates SS et al (1995) Enhancement of domoic acid production by reintroducing bacteria to axenic cultures of the diatom Pseudo-nitzschia multiseries. Nat Toxins 3:429–435

    Article  Google Scholar 

  242. Bates SS et al (2004) Interaction between bacteria and the domoic-acid-producing diatom Pseudo-nitzschia multiseries (Hasle) Hasle; can bacteria produce domoic acid autonomously? Harmful Algae 3:11–20

    Article  Google Scholar 

  243. Kaczmarska I et al (2005) Diversity and distribution of epibiotic bacteria on Pseudo-nitzschia multiseries (Bacillariophyceae) in culture, and comparison with those on diatoms in native seawater. Harmful Algae 4:725–741

    Article  Google Scholar 

  244. Brock TD (1973) Evolutionary and ecological aspects of the cyanophytes. In: Carr NG, Whitton BA (eds) The biology of blue-green algae. University of California Press, Berkeley, pp 487–500

    Google Scholar 

  245. Whitton BA, Potts M (eds) (2002) The ecology of cyanobacteria: their diversity in time and space. Academic, New York

    Google Scholar 

  246. Schofp JW (2002) The fossil record: tracing the roots of the cyanobacterial lineage. In: Whitton BA, Potts M (eds) The ecology of cyanobacteria: their diversity in time and space. Academic, New York, pp 13–35

    Google Scholar 

  247. Francis G (1878) Poisonous Australian lake. Nature 18:11–12

    Article  Google Scholar 

  248. Codd GA, Bell SG, Brooks WP (1989) Cyanobacterial toxins in water. Water Sci Technol 21:1–13

    CAS  Google Scholar 

  249. Pilotto LS et al (1997) Health effects of exposure to cyanobacteria (blue-green algae) due to recreational water-related activities. Aust N Z J Public Health 21:562–566

    Article  CAS  Google Scholar 

  250. Stewart I (2008) Cyanobacterial poisoning in livestock, wild animals, and birds–an overview. In: Hudnell HK (ed) Cyanobacterial harmful algal blooms: state of the science and research needs. Springer, New York, p 500

    Google Scholar 

  251. Teixera MGLC et al (1993) Gastroenteritis epidemic in the area of the Itaparica Dam, Bahia, Brazil. Bull Pan Am Health Organ 27:244–253

    Google Scholar 

  252. Tisdale ES (1931) Epidemic of intestinal disorders in Charleston, W.Va., occurring simultaneously with unprecedented water supply conditions. Am J Public Health 21:198–200

    Article  CAS  Google Scholar 

  253. Turner PC et al (1990) Pneumonia associated with cyanobacteria. Br Med J 300:1440–1441

    Article  CAS  Google Scholar 

  254. Metcalf JS, Codd GA (2004) Cyanobacterial toxins in the water environment. A review of current knowledge. Foundation for Water Research, Marlow

    Google Scholar 

  255. Chorus I, Bartram J (eds) (1999) Toxic cyanobacteria in water. A guide to their public health consequences, monitoring, and management. E & FN Spon, London (on behalf of the World Health Organization)

    Google Scholar 

  256. Falconer IR (1993) Measurement of toxins from blue-green algae in water and foodstuffs. In: Falconer IR (ed) Algal toxins in seafood and drinking water. Academic, New York, pp 165–176

    Chapter  Google Scholar 

  257. Cheng YS et al (2007) Characterization of aerosols containing microcystin. Mar Drugs 5:136–150

    Article  CAS  Google Scholar 

  258. Falconer IR, Buckley TH (1989) Tumour promotion by Microcystis sp., a blue-green algae occurring in water supplies. Med J Australia 150:351–352

    CAS  Google Scholar 

  259. Falconer IR, Humpage AR (1996) Tumour promotion by cyanobacterial toxins. Phycologia 35(Suppl 6):74–79

    Article  Google Scholar 

  260. Fujiki H, Sueoka E, Suganuma M (1996) Carcinogenesis of microcystins. In: Watanabe MF et al (eds) Toxic microcystis. CRC Press, Boca Raton, pp 203–232

    Google Scholar 

  261. Humpage AR et al (2000) Microcystins (cyanobacterial toxins) in drinking water enhance the growth of aberrant crypt foci in the mouse colon. J Toxicol Environ Health A 61:155–165

    Article  CAS  Google Scholar 

  262. Zhou L, Yu H, Chen K (2002) Relationship between microcystin in drinking water and colorectal cancer. Biomed Environ Sci 15(2):166–171

    Google Scholar 

  263. World Health Organization (2008) Guidelines for drinking-water quality: incorporating the 1st and 2nd addenda. World Health Organization, Geneva

    Google Scholar 

  264. Burns J (2008) Toxic cyanobacteria in Florida waters. In: Hudnell HK (ed) Cyanobacterial harmful algal blooms: state of the science and research needs. Springer, New York, p 500

    Google Scholar 

  265. Westrick JA (2008) Cyanobacterial toxin removal in drinking water treatment processes and recreational water. In: Hudnell HK (ed) Cyanobacterial harmful algal blooms: state of the science and research needs. Springer, New York, p 500

    Google Scholar 

  266. Carmichael WW (2001) Assessment of blue-green algal toxins in raw and finished drinking water. AWWA Research Foundation and American Water Works Association, Denver

    Google Scholar 

  267. Chorus I, Fastner F (2001) Recreational exposure to cyanotoxins. In: Chorus I (ed) Cyanotoxins, occurrence, causes, consequences. Springer, Heidelberg, pp 190–199

    Google Scholar 

  268. Miller MA et al (2010) Evidence for a novel marine harmful algal bloom: cyanotoxin (microcystin) transfer from land to sea otters. PLoS One 5(9):e12576

    Article  CAS  Google Scholar 

  269. Wiegand C, Pflugmacher S (2005) Ecotoxicological effects of selected cyanobacterial secondary metabolites a short review. Toxicol Appl Pharmacol 203:201–218

    Article  CAS  Google Scholar 

  270. Funari E, Testai E (2007) Human health risk assessment related to cyanotoxins exposure. Crit Rev Toxicol 38(2):97–125

    Article  CAS  Google Scholar 

  271. Henricksen P et al (1997) Detection of an anatoxin-a(s)-like anticholinesterase in natural blooms and cultures of cyanobacteria/blue-green algae from Danish lakes and in the stomach contents of poisoned birds. Toxicon 35(1111):901–913

    Article  Google Scholar 

  272. Matsunaga S et al (1989) Anatoxin-a(s), a potent anticholinesterase from Anabaena flos-aquae. J Am Chem Soc 111(494):8021–8023

    Article  CAS  Google Scholar 

  273. Mahmood NA, Carmichael WW (1986) Paralytic shellfish poison produced by the freshwater cyanobacterium Aphanizomeno flos-aquae NH-5. Toxicon 24:175–186

    Article  CAS  Google Scholar 

  274. Stewart I, Schluter PJ, Shaw GR (2006) Cyanobacterial lipopolysaccharides and human health – a review. Environ Health A Global Access Sci Source 5:7

    Google Scholar 

  275. Smith JL, Boyer GL, Zimba PV (2008) A review of cyanobacterial odorous and bioactive metabolites: impacts and management alternatives in aquaculture. Aquaculture 280:5–20

    Article  CAS  Google Scholar 

  276. Fujiki H et al (1985) A blue-green alga from Okinawa contains aplysiatoxins, the third class of tumour promoters. Jpn J Cancer Res 76:257–259

    CAS  Google Scholar 

  277. Shimizu Y (1996) Microalgal metabolites: a new perspective. Annu Rev Microbiol 50:431–465

    Article  CAS  Google Scholar 

  278. Fujiki H et al (1990) New tumour promoters from marine natural products. In: Hall S, Strichartz G (eds) Marine toxins. Origin, structure and molecular pharmacology. American Chemical Society, Washington, DC, pp 232–240

    Chapter  Google Scholar 

  279. Gorham PR, Carmichael WW (1988) Hazards of freshwater blue-green algae (cyanobacteria). In: Lembi CA, Waaland JR (eds) Algae and human affairs. Cambridge University Press, New York, pp 404–431

    Google Scholar 

  280. Aguirre AA et al (2006) Hazards associated with the consumption of sea turtle meat and eggs: a review for health care workers and the general public. EcoHealth 3(3):141–153

    Article  Google Scholar 

  281. Yasumoto Y (1998) Fish poisoning due to toxins of microalgal origins in the Pacific. Toxicon 36:1515–1518

    Article  CAS  Google Scholar 

  282. Papapetropoulos S (2007) Is there a role for naturally occurring cyanobacterial toxins in neurodegeneration? The beta-N-methylamino-L-alanine (BMAA) paradigm. Neurochem Int 50:998–1003

    Article  CAS  Google Scholar 

  283. Wilson JM et al (2002) Behavioral and neurological correlates of ALS-parkinsonian dementia complex in adult mice fed washed cycad flour. Neuromol Med 1:207–221

    Article  CAS  Google Scholar 

  284. Rao SD et al (2006) BMAA selectively injures motor neurons via AMP/kainate receptor activation. Exp Neurol 201:244–252

    Article  CAS  Google Scholar 

  285. Lobner D et al (2007) Beta-N-methyl-amino-L-alanine enhances neurotoxicity through multiple mechanisms. Neurobiol Dis 25(2):360–365

    Article  CAS  Google Scholar 

  286. Buenz EJ, Howe CL (2007) Beta-methylamino-alanine (BMAA) injures hippocampal neurons in vivo. Neurotoxicology 28(3):702–704

    Article  CAS  Google Scholar 

  287. Liu XQ et al (2010) Selective death of cholinergic neurons induced by beta-methylamino-L-alanine. Neuroreport 21(1):55–58

    Article  CAS  Google Scholar 

  288. Karlsson O et al (2009) Selective brain uptake and behavioral effects of the cyanobacterial toxin BMAA (β-N-methylamino-L-alanine) following neonatal administration to rodents. Toxicol Sci 109(2):286–295

    Article  CAS  Google Scholar 

  289. Wilde SB et al (2005) Avian vacuolar myelinopathy linked to exotic aquatic plants and a novel cyanobacterial species. Environ Toxicol 20(3):348–353

    Article  CAS  Google Scholar 

  290. Bidigare RR et al (2009) Cyanobacteria and BMAA: possible linkage with avian vacuolar myelinopathy (AVM) in the southeastern United States. Amyotroph Lateral Scler 10(Suppl 2):71–73

    Article  Google Scholar 

  291. Fischer JR, Lewis-Weis LA, Tate CM (2003) Experimental vacuolar myelinopathy in red-tailed hawks. J Wildl Dis 39(2):400–406

    Google Scholar 

  292. Birrenkot AH et al (2004) Establishing a food-chain link between aquatic plant material and avian vacuolar myelinopathy in mallards (Anas plytyrhynchos). J Wildl Dis 40(3):485–494

    Google Scholar 

  293. Murch SJ, Cox PA, Banack SA (2004) A mechanism for slow release of biomagnified cyanobacterial neurotoxins and neurodegenerative disease in Guam. Proc Natl Acad Sci U S A 101:12228–12231

    Article  CAS  Google Scholar 

  294. Esterhuizen M, Downing TG (2008) Beta-N-methylamino-L-alanine (BMAA) in novel South African cyanobacterial isolates. Ecotoxicol Environ Saf 71:309–313

    Article  CAS  Google Scholar 

  295. Johnson HE et al (2008) Cyanobacteria (Nostoc commune) used as a dietary item in the Peruvian highlands produces the neurotoxic amino acid BMAA. J Ethnopharmacol 118:159–165

    Article  CAS  Google Scholar 

  296. Li A et al (2010) Detection of the neurotoxin BMAA within cyanobacteria isolated from freshwater in China. Toxicon 55:947–953

    Article  CAS  Google Scholar 

  297. Metcalf JS et al (2008) Co-occurrence of beta-N-methylamino-L-alanine, a neurotoxic amino acid with other cyanobacterial toxins in British waterbodies, 1990–2004. Environ Microbiol 10(3):702–708

    Article  CAS  Google Scholar 

  298. Cox PA et al (2005) Diverse taxa of cyanobacteria produce beta-N-methylamino-L-alanine, a neurotoxic amino acid. Proc Natl Acad Sci U S A 102:5074–5078

    Article  CAS  Google Scholar 

  299. Caller TA et al (2009) A cluster of amyotrophic lateral sclerosis in New Hampshire: a possible role for toxic cyanobacteria blooms. Amyotroph Lateral Scler 10(Suppl 2):101–108

    Article  CAS  Google Scholar 

  300. Tucker CS (2000) Off-flavor problems in aquaculture. Rev Fish Sci 8(1):45–88

    Article  CAS  Google Scholar 

  301. Dodds WK et al (2009) Eutrophication of U.S. freshwaters: analysis of potential economic damages. Environ Sci Technol 43:12–19

    Article  CAS  Google Scholar 

  302. World Health Organization (2003) Guidelines for safe recreational water environments. Volume 1: coastal and fresh waters. World Health Organization, Geneva

    Google Scholar 

  303. Steffensen DA (2008) Economic cost of cyanobacterial blooms. In: Hudnell HK (ed) Cyanobacterial harmful algal blooms: state of the science and research needs, vol 619, Advances in experimental medicine and biology. Springer, New York, 500pp

    Google Scholar 

  304. Kenefick SL et al (1992) Odorous substances and cyanobacterial toxins in praire drinking water sources. Water Sci Technol 25:147–154

    CAS  Google Scholar 

  305. Paerl HW (2008) Nutrient and other environmental controls of harmful cyanobacterial blooms along the freshwater-marine continuum. In: Hudnell HK (ed) Cyanobacterial harmful algal blooms: state of the science and research needs, vol 619, Advances in experimental medicine and biology. Springer, New York, 500pp

    Google Scholar 

  306. Garcia-Villada L et al (2004) Occurrence of copper resistant mutants in the toxic cyanobacteria Microcystis aeruginosa: characterization and future implications in the use of copper sulphate as algaecide. Water Res 38:2207–2213

    Article  CAS  Google Scholar 

  307. Hitzfeld BC, Hoeger SJ, Dietrich DR (2000) Cyanobacterial Toxins: removal during drinking water treatment, and human risk assessment. Environ Health Perspect 108(6):113–122

    CAS  Google Scholar 

  308. Hoeger SJ, Hitzfeld BC, Dietrich DR (2005) Occurrence and elimination of cyanobacterial toxins in drinking water treatment plants. Toxicol Appl Pharmacol 203:231–242

    Article  CAS  Google Scholar 

  309. Hoeger SJ et al (2004) Occurrence and elimination of cyanobacterial toxins in two Australian drinking water treatment plants. Toxicon 43(14248):639–649

    Article  CAS  Google Scholar 

  310. Jones G, Gurney S, Rocan D (1996) Water quality/toxic algae study interim report: summary of the 1995 field season results. Manitoba Environment, 4 June 1996

    Google Scholar 

  311. Lambert TW, Holmes CFB, Hrudey SE (1996) Adsorption of microcystin-LR by activating carbon and removal in full-scale water treatment. Water Res 30(6):1411–1422

    Article  CAS  Google Scholar 

  312. Wannemacher JRW et al (1993) Treatment for removal of biotoxins from drinking water. US Army Biomedical Research and Development Laboratory, Fort Detrick, Frederick

    Google Scholar 

  313. James H, Lloyd A (2002) Blue-green algae and their toxins – Great Britain’s perspective. In: Proceedings of the health effects of exposure to cyanobacteria toxins: state of the science, Sarasota

    Google Scholar 

  314. Kim S-C, Lee D-K (2005) Inactivation of algal blooms in eutrophic water of drinking water supplies with the photocatalysis of TiO2 thin film on hollow glass beads. Water Sci Technol 52(9):145–152

    CAS  Google Scholar 

  315. Ueno Y et al (1996) Detection of microcystins, a blue-green algal hepatotoxin, in drinking water sampled in Haimen and Fusui, endemic areas of primary liver cancer in China, by highly sensitive immunoassay. Carcinogenesis 17:1317

    Article  CAS  Google Scholar 

  316. Koskenniemi K et al (2007) Quantitative real-time PCR detection of toxic Nodularia cyanobacteria in the Baltic Sea. Appl Environ Microbiol 73(7):2173–2179

    Article  CAS  Google Scholar 

  317. Rinta-Kanto JM et al (2005) Quantification of toxic Microcystis spp. during the 2003 and 2004 blooms in western Lake Erie using quantitative real-time PCR. Environ Sci Technol 39(11):4198–4205

    Article  CAS  Google Scholar 

  318. Codd GA et al (2001) Analysis of cyanobacterial toxins by physiochemical and biochemical methods. J AOAC Int 84:1625–1635

    Google Scholar 

  319. Dorr FA et al (2010) Methods for detection of anatoxin-a(s) by liquid chromatography coupled to electrospray ionization-tandem mass spectrometry. Toxicon 55:92–99

    Article  CAS  Google Scholar 

  320. Fischer WJ et al (2001) Congener-independent immunoassay for microcystins and nodularins. Environ Sci Technol 35:4849–4856

    Article  CAS  Google Scholar 

  321. Metcalf JS, Bell SG, Codd GA (2001) Colorimetric immuno-protein phophatase inhibition assay for specific detection of microcystins and nodularins of cyanobacteria. Appl Environ Microbiol 67:904–909

    Article  CAS  Google Scholar 

  322. Anderson WB, Slawson RM, Mayfield CI (2002) A review of drinking-water-associated endotoxin, including potential routes of human exposure. Can J Microbiol 48:567–587

    Article  CAS  Google Scholar 

  323. Carmichael WW (1992) Occurrence of toxic cyanobacteria. US EPA. Agency, Cincinnati, OH, pp 15–26

    Google Scholar 

  324. Oberholster PJ, Botha A-M, Grobbelaar JU (2004) Microcystis aeruginosa: source of toxic microcystins in drinking water. African J Biotech 3:159–168

    CAS  Google Scholar 

  325. Carmichael WW (2008) A world overview one-hundred, twenty-seven years of research on toxic cyanobacteria – where do we go from here? In: Hudnell HK (ed) Cyanobacterial harmful algal blooms: state of the science and research needs, vol 619, Advances in experimental medicine and biology. Springer, New York, 500 pp

    Google Scholar 

  326. Burns J, Williams C, Chapman A (2002) Cyanobacteria and their toxins in Florida surface waters. In: Proceedings of the health effects of exposure to cyanobacteria toxins: state of the science, Sarasota

    Google Scholar 

  327. Giddings M et al (2002) Cyanobacterial toxins: the development and evaluation of method to determine microcystin levels in Canadian water supplies. In: Proceedings of the health effects of exposure to cyanobacteria toxins: state of the science, Sarasota

    Google Scholar 

  328. Boyer GL (2008) Cyanobacterial toxins in New York and the lower great lakes ecosystems. In: Hudnell HK (ed) Cyanobacterial harmful algal blooms: state of the science and research needs. Springer, New York, p 500

    Google Scholar 

  329. Fristachi A et al (2007) A preliminary exposure assessment of microcystins from consumption of drinking water in the United States. Lake Reserv Manag 23(2):203–210

    Article  Google Scholar 

  330. Osswald J et al (2007) Toxicology and detection methods of the alkaloid neurotoxin produced by cyanobacteria, anatoxin-a. Environ Int 33:1070–1089

    Article  CAS  Google Scholar 

  331. Falconer IR (2005) Cyanobacterial toxins of drinking water supplies: cylindrospermopsins and microcystins. CRC Press, Florida

    Google Scholar 

  332. Walsby AE, Schanz F, Schmid M (2006) The Burgundy-blood phenomenon: a model of buoyancy change explains autumnal waterblooms by Planktothrix rubescens in Lake Zurich. New Phytol 169:109–122

    Article  Google Scholar 

  333. Metting B, Pyne JW (1986) Biologically-active compounds from microalgae. Enzyme Microb Technol 8:386–394

    Article  CAS  Google Scholar 

  334. Sellner KG (1997) Physiology, ecology, and toxic sproperties of marine cyanobacteria blooms. Limnol Oceanogr 42(5 Pt 2):1089–1104

    Article  Google Scholar 

Books and Reviews

  • Anderson DM (2009) Approaches to monitoring, control and management of harmful algal blooms (HABs). Ocean Coast Manag 52(7):342–347

    Article  Google Scholar 

  • Babin M et al (2005) New approaches and technologies for observing harmful algal blooms. Oceanography 18(2):210–227

    Article  Google Scholar 

  • Bauer M et al (2010) The importance of human dimensions research in managing harmful algal blooms. Front Ecol Environ 8(2):75–83

    Article  Google Scholar 

  • Fleming LE et al (2011) Review of Florida red tide and human health effects. Harmful Algae 10(2):224–233

    Article  Google Scholar 

  • Graneli E, Turner JT (eds) (2006) Ecology of harmful algae. Springer, Berlin/Heidelberg

    Google Scholar 

  • Hoagland P et al (2002) The economic effects of harmful algal blooms in the United States: estimates, assessment issues, and information needs. Estuaries Coast 25(4):819–837

    Article  Google Scholar 

  • Hudnell HK (ed) (2008) Advances in experimental medicine and biology, vol 619. Springer, New York

    Google Scholar 

  • Hudnell HK (2010) Harmful algal blooms and natural toxins in fresh and marine waters – exposure, occurrence, detection, toxicity, control, management and policy. Toxicon 55(5):1024–1034

    Article  CAS  Google Scholar 

  • Hudnell HK et al (2010) Freshwater harmful algal bloom (FHAB) suppression with solar powered circulation (SPC). Harmful Algae 9:208–217

    Article  Google Scholar 

  • Landsberg JH (2002) The effects of harmful algal blooms on aquatic organisms. Rev Fish Sci 10(2):113–390

    Article  Google Scholar 

  • Lewis RJ, Poli M (2010) Toxins in seafood. Toxicon 56(2):107–258 (Special Issue)

    Article  CAS  Google Scholar 

  • Secher S (2009) Measures to control harmful algal blooms. The Plymouth Student Scientist 2(1):212–227

    Google Scholar 

  • Shumway S, Rodrick G (eds) (2009) Shellfish safety and quality. Woodhead, Cambridge

    Google Scholar 

  • Valiela I et al (1997) Macroalgal blooms in shallow estuaries: controls and ecophysiological and ecosystem consequences. Limnol Oceanogr 42(5 Pt 2):1105–1118

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Timothy I. McLean .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this entry

Cite this entry

McLean, T.I., Sinclair, G.A. (2012). Harmful Algal Blooms . In: Meyers, R.A. (eds) Encyclopedia of Sustainability Science and Technology. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-0851-3_829

Download citation

Publish with us

Policies and ethics