Skip to main content

Cooperative Group of Vehicles and Dangerous Situations, Recognition of

  • Reference work entry
Book cover Encyclopedia of Sustainability Science and Technology
  • 179 Accesses

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 6,999.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

Cognitive vehicle:

A road vehicle equipped with sensors like video, radar, or lidar and information processing resources for environment perception. Furthermore, cognitive vehicles may have human–machine interfaces, actuators for automatic intervention or fully autonomous operation, and wireless communication devices.

Common relevant picture:

Data structure containing the information necessary for situation analysis and decision making within a cooperative group. The information originates from the sensors of the vehicles, is enhanced by fusion algorithms, and is communicated to all vehicles of the group.

Cooperative group (CG):

A set of cognitive vehicles which cooperate in order to mitigate dangerous traffic situations.

Dangerous situation:

Traffic situation with immediate threat of an accident.

Driver assistance system:

Technical system supporting human drivers in performing certain driving tasks. Driver assistance systems can be classified into comfort systems (not subject of this entry) and safety systems.

Motion planning:

Algorithmic planning of feasible, collision-free vehicle trajectories.

Prediction:

Projection of system states into the near future. Specifically, in this context, model-based prognosis of vehicle position.

Wireless vehicular communication:

Networking of multiple vehicles using wireless local area network or cellular communication technologies.

Bibliography

  1. Vahidi A, Eskandarian A (2003) Research advances in intelligent collision avoidance and adaptive cruise control. IEEE Trans Intell Transp Syst 4(3):143–153

    Article  Google Scholar 

  2. Tideman M, van der Voort MC, van Arem B, Tillema F (2007) A review of lateral driver support systems. In: Proceedings of the IEEE intelligent transportation systems conference, Seattle, Washington, pp 992–999

    Google Scholar 

  3. Buehler M, Iagnemma K, Singh S (eds) (2009) The DARPA urban challenge – autonomous vehicles in city traffic. In: Springer tracts in advanced robotics, vol 56. Springer, Berlin

    Google Scholar 

  4. Hartenstein H, Laberteaux K (2008) A tutorial survey on vehicular ad hoc networks. IEEE Commun Mag 46(6):164–171

    Article  Google Scholar 

  5. Schulze M, Nöcker G, Böhm K (2005) PReVENT: a European program to improve active safety. In: Proceedings of the 5th international conference on intelligent transportation systems telecommunications, Brest

    Google Scholar 

  6. Adler C, Straßberger M (2006) Putting together the pieces – a comprehensive view on cooperative local danger warning. In: Proceedings of the world congress on intelligent transport systems and services, London

    Google Scholar 

  7. Dao T-S, Ng L, Clark C, Huissoon JP (2008) Realtime experiments in Markov-based lane position estimation using wireless ad-hoc network. In: Proceedings of the IEEE intelligent vehicles symposium, Eindhoven, pp 901–906

    Google Scholar 

  8. Tischler K, Vogt H (2007) A sensor data fusion approach for the integration of negative information. In: Proceedings of conference on information fusion, Quebec

    Google Scholar 

  9. Huang D, Leung H (2005) An expectation-maximization-based interacting multiple model approach for cooperative driving systems. IEEE Trans Intell Transp Syst 6(2):206–228

    Article  Google Scholar 

  10. Varaiya P (1993) Smart cars on smart roads: problems of control. IEEE Trans Autom Control 38(2):195–207

    Article  Google Scholar 

  11. Zambou N, Enning M, Abel D (2004) Nonlinear spacing control of following vehicles within platoon – a controlled Lagrangian approach. In: IFAC symposium on nonlinear control systems, Stuttgart, pp 931–936

    Google Scholar 

  12. Dao T-S, Clark C, Huissoon JP (2008) Distributed platoon assignment and lane selection for traffic flow optimization. In: Proceedings of the IEEE intelligent vehicles symposium, Eindhoven, pp 739–744

    Google Scholar 

  13. Li L, Wang F-Y (2006) Cooperative driving at blind crossings using intervehicle communication. IEEE Trans Veh Technol 55(6):1712–1724

    Article  Google Scholar 

  14. Schepperle H, Böhm K, Forster S (2007) Traffic management based on negotiations between vehicles – a feasibility demonstration using agents. In: Workshop on agent mediated electronic commerce, Honolulu

    Google Scholar 

  15. Roughgarden T (2005) Selfish routing and the price of anarchy. MIT Press, Cambridge, MA

    Google Scholar 

  16. Frese C, Beyerer J, Zimmer P (2007) Cooperation of cars and formation of cooperative groups. In: Proceedings of the IEEE intelligent vehicles symposium, Istanbul, pp 227–232

    Google Scholar 

  17. Frese C, Batz T, Wieser M, Beyerer J (2008) Life cycle management for cooperative groups of cognitive automobiles in a distributed environment. In: Proceedings of the IEEE intelligent vehicles symposium, Eindhoven

    Google Scholar 

  18. Schultes D (2008) Route planning in road networks. PhD thesis, Universität Karlsruhe (TH)

    Google Scholar 

  19. Cormen T, Leiserson C, Rivest R (2001) Introduction to algorithms, 2nd edn. MIT Press, Cambridge, MA

    Google Scholar 

  20. Vacek S, Nagel R, Batz T, Moosmann F, Dillmann R (2007) An integrated simulation framework for cognitive automobiles. In: Proceedings of the IEEE intelligent vehicles symposium, Istanbul, Türkei, pp 221–226

    Google Scholar 

  21. Munaka T, Yamamoto T, Watanabe T (2005) A reliable advanced-join system for data multicasting in ITS networks. IEEE Trans Intell Transp Syst 6(4):424–438

    Article  Google Scholar 

  22. Chen W, Lee J, Hikita T, Onishi R (2007) Embedded multicasting with vehicle local peer group for efficient vehicle communications. In: Proceedings of the IEEE workshop on vehicle-to-vehicle communications, Istanbul

    Google Scholar 

  23. Mocito J, Rodrigues L (2006) Reconfigurable architecture for group communication support in hybrid networks. In: Koldehofe B (ed) Proceedings of the 4th MiNEMA workshop, Sintra

    Google Scholar 

  24. Miller J (2008) Vehicle-to-vehicle-to-infrastructure (V2V2I) intelligent transportation system architecture. In: Proceedings of the IEEE intelligent vehicles symposium, Eindhoven, pp 715–720

    Google Scholar 

  25. Huang Q, Julien C, Roman G-C (2004) Relying on safe distance to achieve strong partitionable group membership in ad hoc networks. IEEE Trans Mob Comput 3(2):192–205

    Article  Google Scholar 

  26. Shimura A, Sakaibara T, Hiraiwa M, Aizono T (2003) Proposal of an autonomous group-management model and its application to intelligent transport system. In: Proceedings of the 6th international symposium on autonomous decentralized systems, Pisa

    Google Scholar 

  27. Fujii H, Akiyama M, Tokuda K (1999) Inter-vehicle communications protocol for group cooperative driving. In: Proceedings of the IEEE vehicular technology conference, Amsterdam, The Netherlands

    Google Scholar 

  28. Huang J, Tan H-S (2006) Design and implementation of a cooperative collision warning system. In: Proceedings of the IEEE intelligent transportation systems conference, Toronto

    Google Scholar 

  29. Clark C (2004) Dynamic robot networks: a coordination platform for multi-robot systems. PhD thesis, Stanford University

    Google Scholar 

  30. Premvuti S, Yuta S (1990) Consideration on the cooperation of multiple autonomous mobile robots. In: Proceedings of the IEEE/RSJ conference on intelligent robots and systems, Ibaraki

    Google Scholar 

  31. Briesemeister L (2001) Group membership and communication in highly mobile ad hoc networks. Dissertation, Technische Universität Berlin

    Google Scholar 

  32. Pallottino L, Scordio V, Bicchi A (2004) Decentralized cooperative conflict resolution among multiple autonomous mobile agents. In: Proceedings of the IEEE conference on decision and control, Atlantis, Paradise Island

    Google Scholar 

  33. Ragothaman V, Baloch F, Pendse R (2006) Unassisted aircraft landing via co-operative data exchange. In: Digital avionics systems conference, Portland

    Google Scholar 

  34. Chisalita I, Shahmehri N (2004) A context-based vehicular communication protocol. In: Proceedings of the IEEE symposium on personal, indoor and mobile radio communications, Barcelona

    Google Scholar 

  35. Nett E, Schemmer S (2003) Reliable real-time communication in cooperative mobile applications. IEEE Trans Comput 52(2):166–180

    Article  Google Scholar 

  36. Meier R, Killijian M-O, Cunningham R, Cahill V (2001) Towards proximity group communication. In: Middleware for mobile computing, Heidelberg

    Google Scholar 

  37. Dao T-S, Clark C, Huissoon JP (2007) Optimized lane assignment using inter-vehicle communication. In: Proceedings of the IEEE intelligent vehicles symposium, Istanbul

    Google Scholar 

  38. Li L, Wang F-Y, Zhang Y (2007) Cooperative driving at lane closures. In: Proceedings of the IEEE intelligent vehicles symposium, Istanbul

    Google Scholar 

  39. Haruna T, Okada Y, Shigeno H (2007) A construction method of road-static network with vehicular ad-hoc networks. In: Proceedings of the IEEE workshop on vehicle-to-vehicle communications, Istanbul

    Google Scholar 

  40. Sheng W, Yang Q, Guo Y (2006) Experimental testbed and distributed algorithm for cooperative driving in VII simulation. In: Proceedings of the IEEE intelligent transportation systems conference, Toronto

    Google Scholar 

  41. Judaschke U (1994) Verfahren zur kollisionsfreien Führung und Koordination mobiler Transportsysteme. PhD thesis, Universität Dortmund

    Google Scholar 

  42. Chiang Y-J, Klosowski J, Lee C, Mitchell J (1997) Geometric algorithms for conflict detection/resolution in air traffic management. In: Proceedings of the IEEE conference on decision and control, San Diego

    Google Scholar 

  43. Zhou M (2007) A traffic data exchange protocol in vehicular ad-hoc network. In: Proceedings of the international workshop on intelligent transportation, Hamburg

    Google Scholar 

  44. Khan MA, Bölöni L (2005) Convoy driving through ad-hoc coalition formation. In: Proceedings of the IEEE real time and embedded technology and applications symposium, San Francisco, pp 98–105

    Google Scholar 

  45. Hallé S, Chaib-draa B (2004) Collaborative driving system using teamwork for platoon formations. In: Proceedings of workshop on agents in traffic and transportation, New York

    Google Scholar 

  46. Batz T, Watson K, Beyerer J (2009) Recognition of dangerous situations within a cooperative group of vehicles. In: Proceedings of IEEE intelligent vehicles symposium, Xi’an, China, pp 907–912

    Google Scholar 

  47. Tan H-S, Huang J (2006) A low-order DGPS-based vehicle positioning system under urban environment. IEEE ASME Trans Mechatron 11(5):567–575

    Article  Google Scholar 

  48. Tan H-S, Huang J (2006) DGPS-based vehicle-to-vehicle cooperative collision warning: engineering feasibility viewpoints. IEEE Trans Intell Transp Syst 7(4):415–428

    Article  Google Scholar 

  49. Wan EA, Van Der Merwe R (2001) Chapter 7: the unscented kalman filter. In: Kalman filtering and neural networks. Wiley, New York, pp 221–280

    Chapter  Google Scholar 

  50. Caveney D (2007) Stochastic path prediction using the unscented transform with numerical integration. In: Proceedings of the 2007 IEEE intelligent transportation systems conference, Seattle, 30 Sept–3 Oct 2007

    Google Scholar 

  51. Kvasnica M, Grieder P, Baotić M (2004) Multi-parametric toolbox (MPT). http://control.ee.ethz.ch/~mpt/

  52. Löfberg J (2004) YALMIP: a toolbox for modeling and optimization in MATLAB, http://control.ee.ethz.ch/~joloef/yalmip.php. In: Proceedings of the CACSD conference, Taipei, Taiwan

  53. Miller R, Huang Q (2002) An adaptive peer-to-peer collision warning system. In: Proceedings of the IEEE vehicular technology conference, Birmingham, pp 317–321

    Google Scholar 

  54. van den Broek T, Ploeg J (2010) Collision warning system based on probability density functions. In: Proceedings of the International workshop on intelligent transportation, Hamburg, pp 141–147

    Google Scholar 

  55. Misener JA, Sengupta R, Krishnan H (2005) Cooperative collision warning: enabling crash avoidance with wireless technology. In: Proceedings of the world congress on intelligent transport systems and services, San Francisco

    Google Scholar 

  56. Benmimoun A, Chen J, Suzuki T (2007) Design and practical evaluation of an intersection assistant in real world tests. In: Proceedings of the IEEE intelligent vehicles symposium, Istanbul

    Google Scholar 

  57. Chen J, Deutschle S, Fuerstenberg K (2007) Evaluation methods and results of the INTERSAFE intersection assistants. In: Proceedings of the IEEE intelligent vehicles symposium, Istanbul, pp 142–147

    Google Scholar 

  58. Onken R (1994) DAISY, an adaptive, knowledge-based driver monitoring and warning system. In: Proceedings of the vehicle navigation & information systems conference, Yokohama, pp 3–10

    Google Scholar 

  59. Ishida S, Gayko J (2004) Development, evaluation and introduction of a lane keeping assistance system. In: Proceedings of the IEEE intelligent vehicles symposium, Parma, pp 943–944

    Google Scholar 

  60. McCall J, Wipf D, Trivedi M, Rao B (2005) Lane change intent analysis using robust operators and sparse bayesian learning. In: IEEE/CVPR workshop on machine vision for intelligent vehicles, San Diego

    Google Scholar 

  61. Zhang J, Roessler B (2009) Situation analysis and adaptive risk assessment for intersection safety systems in advanced assisted driving. In: Autonome mobile system, Karlsruhe, pp 249–258

    Google Scholar 

  62. ElBatt T, Goel S, Holland G, Krishnan H, Parikh J (2006) Cooperative collision warning using dedicated short range wireless communications. In: ACM VANET, Los Angeles

    Google Scholar 

  63. Morsink P, Hallouzi R, Dagli I, Cseh C, Schäfers L, Nelisse M, de Bruin D (2003) CarTALK 2000: development of a cooperative ADAS based on vehicle-to-vehicle communication. In: Proceedings of the world congress on intelligent transport systems and services, Madrid

    Google Scholar 

  64. Girard AR, de Sousa JB, Misener JA, Hedrick JK (2001) A control architecture for integrated cooperative cruise control and collision warning systems. In: Proceedings of the IEEE conference on decision and control, Orlando

    Google Scholar 

  65. Uno A, Sakaguchi T, Tsugawa S (1999) A merging control algorithm based on inter-vehicle communication. In: Proceedings of the IEEE intelligent transportation systems conference, Tokyo, pp 783–787

    Google Scholar 

  66. Bruns T, Trächtler A (2009) Intersection management: trajectory planning by means of dynamic programming. Automatisierungstechnik 57(5):253–261

    Article  Google Scholar 

  67. Murray R (2007) Recent research in cooperative control of multivehicle systems. ASME J Dyn Syst Meas Control 129:571–583

    Article  Google Scholar 

  68. Dimarogonas D, Kyriakopoulos K (2005) A feedback stabilization and collision avoidance scheme for multiple independent nonholonomic non-point agents. In: Proceedings of the 2005 IEEE international symposium on intelligent control limassol, Cyprus, pp 820–825

    Google Scholar 

  69. Hillenbrand J, Spieker A, Kroschel K (2006) A multilevel collision mitigation approach – its situation assessment, decision making, and performance tradeoffs. IEEE Trans Intell Transp Syst 7(4):528–540

    Article  Google Scholar 

  70. Isermann R, Schorn M, Stählin U (2008) Anticollision system PRORETA with automatic braking and steering. Veh Syst Dyn 46:683–694

    Article  Google Scholar 

  71. Schmidt C, Oechsle F, Branz W (2006) Research on trajectory planning in emergency situations with multiple objects. In: Proceedings of the IEEE intelligent transportation systems conference, Toronto, pp 988–992

    Google Scholar 

  72. Lachner R, Breitner M, Pesch HJ (2000) Real-time collision avoidance: differential game, numerical solution, and synthesis of strategies. In: Filar J, Gaitsgory V, Mizukami K (eds) Advances in dynamic games and applications. Birkhäuser, Boston

    Google Scholar 

  73. Lozano-Pérez T (1983) Spatial planning: a configuration space approach. IEEE Trans Comput 32(2):108–120

    Article  Google Scholar 

  74. Choset H, Lynch K, Hutchinson S, Kantor G, Burgard W, Kavraki L, Thrun S (2005) Principles of robot motion. MIT Press, Cambridge

    Google Scholar 

  75. LaValle S (2006) Planning algorithms. Cambridge University Press, Cambridge, UK

    Book  Google Scholar 

  76. Laumond J-P, Sekhavat S, Lamiraux F (1998) Guidelines in nonholonomic motion planning for mobile robots. In: Laumond J-P (ed) Robot motion planning and control. Springer, New York

    Chapter  Google Scholar 

  77. LaValle S, Kuffner J (1999) Randomized kinodynamic planning. In: Proceedings of the IEEE conference on robotics and automation, Detroit, pp 473–479

    Google Scholar 

  78. Petti S, Fraichard T (2005) Safe motion planning in dynamic environments. In: Proceedings of the IEEE/RSJ conference on intelligent robots and systems, Edmonton, pp 3726–3731

    Google Scholar 

  79. Hesse T, Sattel T (2007) An approach to integrate vehicle dynamics in motion planning for advanced driver assistance systems. In: Proceedings of the IEEE intelligent vehicles symposium, Istanbul

    Google Scholar 

  80. Latombe J-C (1991) Robot motion planning. Kluwer, Boston, MA

    Book  Google Scholar 

  81. Sánchez G, Latombe J-C (2002) On delaying collision checking in PRM planning: application to multi-robot coordination. Int J Robot Res 21(1):5–26

    Article  Google Scholar 

  82. Clark C, Rock S, Latombe J-C (2003) Motion planning for multiple mobile robots using dynamic networks. In: Proceedings of the IEEE conference on robotics and automation, Taipei, pp 4222–4227

    Google Scholar 

  83. Kant K, Zucker S (1986) Toward efficient trajectory planning: the path-velocity decomposition. Int J Robot Res 5(3):72–89

    Article  Google Scholar 

  84. O´Donnell P, Lozano-Pérez T (1989) Deadlock-free and collision-free coordination of two robot manipulators. In: Proceedings of the IEEE conference on robotics and automation, Scottsdale

    Google Scholar 

  85. Leroy S, Laumond J-P, Siméon T (1999) Multiple path coordination for mobile robots: a geometric algorithm. In: Proceedings of the international joint conference on artificial intelligence, Stockholm

    Google Scholar 

  86. Ghrist R, LaValle S (2006) Nonpositive curvature and pareto optimal coordination of robots. SIAM J Control Optim 45(5):1697–1713

    Article  Google Scholar 

  87. Peng J, Akella S (2005) Coordinating multiple robots with kinodynamic constraints along specified paths. Int J Robot Res 24(4):295–310

    Article  Google Scholar 

  88. Alami R, Fleury S, Herrb M, Ingrand F, Robert F (1998) Multi-robot cooperation in the MARTHA project. IEEE Rob Autom Mag 5(1):36–47

    Article  Google Scholar 

  89. Švestka P, Overmars M (1998) Coordinated path planning for multiple robots. Rob Autom Syst 23:125–152

    Article  Google Scholar 

  90. LaValle S, Hutchinson S (1998) Optimal motion planning for multiple robots having independent goals. IEEE Trans Robot Automation 14(6):912–925

    Article  Google Scholar 

  91. Erdmann M, Lozano-Pérez T (1987) On multiple moving objects. Algorithmica 2:477–521

    Article  Google Scholar 

  92. Freund E, Hoyer H (1988) Real-time pathfinding in multirobot systems including obstacle avoidance. Int J Robot Res 7(1):42–70

    Article  Google Scholar 

  93. Warren CW (1990) Multiple robot path coordination using artificial potential fields. In: Proceedings of the IEEE conference on robotics and automation, Cincinnati

    Google Scholar 

  94. Azarm K, Schmidt G (1996) A decentralized approach for the conflict-free motion of multiple mobile robots. In: Proceedings of the IEEE/RSJ conference on intelligent robots and systems, Osaka

    Google Scholar 

  95. Bekris K, Tsianos K, Kavraki L (2007) A decentralized planner that guarantees the safety of communicating vehicles with complex dynamics that replan online. In: Proceedings of the IEEE/RSJ conference on intelligent robots and systems, San Diego, pp 3784–3790

    Google Scholar 

  96. Bennewitz M, Burgard W, Thrun S (2001) Optimizing schedules for prioritized path planning of multi-robot systems. In: Proceedings of the IEEE conference on robotics and automation, Seoul

    Google Scholar 

  97. van den Berg J, Overmars M (2005) Prioritized motion planning for multiple robots. In: Proceedings of the IEEE/RSJ conference on intelligent robots and systems, Edmonton

    Google Scholar 

  98. Berger JO (1993) Statistical decision theory and Bayesian analysis, Springer series in statistics. Springer, New York

    Google Scholar 

  99. Hart P, Nilsson N, Raphael B (1968) A formal basis for the heuristic determination of minimum cost paths. IEEE Trans Syst Sci Cybern 4(2):100–107

    Article  Google Scholar 

  100. Russell S, Norvig P (2003) Artificial intelligence: a modern approach. Prentice Hall, New York

    Google Scholar 

  101. Frese C, Beyerer J (2010) Planning cooperative motions of cognitive automobiles using tree search algorithms. In: Dillmann R, Beyerer J, Hanebeck UD, Schultz T (eds) KI 2010: advances in artificial intelligence. Lecture notes in artificial intelligence, vol 6359. Springer, Heidelberg, pp 91–98

    Google Scholar 

  102. Schouwenaars T, De Moor B, Feron E, How J (2001) Mixed integer programming for multi-vehicle path planning. In: Proceedings of the European control conference, Porto, pp 2603–2608

    Google Scholar 

  103. Borrelli F, Subramanian D, Raghunathan A, Biegler L (2006) MILP and NLP techniques for centralized trajectory planning of multiple unmanned air vehicles. In: Proceedings of the American control conference, Minneapolis

    Google Scholar 

  104. Richards A, How J (2002) Aircraft trajectory planning with collision avoidance using mixed integer linear programming. In: Proceedings American control conference, Anchorage

    Google Scholar 

  105. Sierksma G (1996) Linear and integer programming: theory and practice. Dekker, New York

    Google Scholar 

  106. Earl M, D’Andrea R (2007) Multi-vehicle cooperative control using mixed integer linear programming. In: Shamma J (ed) Cooperative control of distributed multi-agent systems. Wiley, New York, pp 233–259

    Google Scholar 

  107. Richards A, How J (2004) Decentralized model predictive control of cooperating UAVs. In: Proceedings of the IEEE conference on decision and control, Atlantis

    Google Scholar 

  108. Niedringhaus W (1995) Stream option manager (SOM): automated integration of aircraft separation, merging, stream management, and other air traffic control functions. IEEE Trans Syst Man Cybern 25(9):1269–1280

    Article  Google Scholar 

  109. İnalhan G, Stipanović D, Tomlin C (2002) Decentralized optimization, with application to multiple aircraft coordination. In: Proceedings of the IEEE conference on decision and control, Las Vegas

    Google Scholar 

  110. Quinlan S, Khatib O (1993) Elastic bands: connecting path planning and control. In: Proceedings of the IEEE conference on robotics and automation, Atlanta

    Google Scholar 

  111. Brock O (1999) Generating robot motion: the integration of planning and execution. PhD thesis, Stanford University

    Google Scholar 

  112. Khatib M, Jaouni H, Chatila R, Laumond J-P (1997) Dynamic path modification for car-like nonholonomic mobile robots. In: Proceedings of the IEEE conference on robotics and automation, Albuquerque, pp 2920–2925

    Google Scholar 

  113. Hilgert J, Hirsch K, Bertram T, Hiller M (2003) Emergency path planning for autonomous vehicles using elastic band theory. In: Proceedings of the IEEE/ASME conference on advanced intelligent mechatronics, Kobe

    Google Scholar 

  114. Brandt T, Sattel T, Wallaschek J (2005) On automatic collision avoidance systems. In: Proceedings of SAE world congress, Detroit

    Book  Google Scholar 

  115. Gehrig S, Stein F (2007) Collision avoidance for vehicle-following systems. IEEE Trans Intell Transp Syst 8(2):233–244

    Article  Google Scholar 

  116. Frese C, Batz T, Beyerer J (2008) Cooperative behavior of groups of cognitive automobiles based on a common relevant picture. Automatisierungstechnik 56(12):644–652

    Article  Google Scholar 

  117. Thorpe C, Jochem T, Pomerleau D (1997) The 1997 automated highway free agent demonstration. In: Proceedings of the IEEE intelligent transportation systems conference, Pittsburgh, pp 496–501

    Google Scholar 

  118. Demmel S, Gruyer D, Rakotonirainy A (2010) V2V/V2I augmented maps: state-of-the-art and contribution to real-time crash risk assessment. In: Proceedings of the 20th Canadian multidisciplinary road safety conference, Niagara Falls, Ontario

    Google Scholar 

  119. Jensen FV (2001) Bayesian networks and decision graphs. Springer, New York

    Google Scholar 

  120. Forbes J, Huang T, Kanazawa K, Russell S (1995) The BATmobile: towards a bayesian automated taxi. In: Proceedings of the international joint conference on artificial intelligence, Montreal, pp 1878–1885

    Google Scholar 

  121. Fraichard T, Mermond R (1998) Path planning with uncertainty for car-like robots. In: Proceedings IEEE conference on robotics and automation, Leuven, pp 27–32

    Google Scholar 

  122. Gonzalez JP, Stentz A (2005) Planning with uncertainty in position: an optimal and efficient planner. In: Proceedings of the IEEE/RSJ conference on intelligent robots and systems, Edmonton, pp 2435–2442

    Google Scholar 

  123. Melchior N, Simmons R (2007) Particle RRT for path planning with uncertainty. In: Proceedings of the IEEE conference on robotics and automation, Roma, pp 1617–1624

    Google Scholar 

  124. Toussaint M, Goerick C (2007) Probabilistic inference for structured planning in robotics. In: Proceedings of the IEEE/RSJ conference on intelligent robots and systems, San Diego

    Google Scholar 

  125. Lambert A, Bouaziz S, Reynaud R (2003) Shortest safe path planning for vehicles. In: Proceedings of the IEEE intelligent vehicles symposium, Columbus, OH

    Google Scholar 

  126. Gonzalez JP, Stentz A (2007) Planning with uncertainty in position using high-resolution maps. In: Proceedings of the IEEE conference on robotics and automation, Roma, pp 1015–1022

    Google Scholar 

  127. Broadhurst A, Baker S, Kanade T (2005) Monte Carlo road safety reasoning. In: Proceedings of the IEEE intelligent vehicles symposium, Las Vegas, pp 319–324

    Google Scholar 

  128. Althoff M, Althoff D, Wollherr D, Buss M (2010) Safety verification of autonomous vehicles for coordinated evasive maneuvers. In: Proceedings of the IEEE intelligent vehicles symposium, San Diego, pp 1078–1083

    Google Scholar 

  129. Bekris K, Kavraki L (2007) Greedy but safe replanning under kinodynamic constraints. In: Proceedings of the IEEE conference on robotics and automation, Rome, pp 704–710

    Google Scholar 

  130. Bekris K, Tsianos K, Kavraki L (2007) A distributed protocol for safe real-time planning of communicating vehicles with second-order dynamics. In: Proceedings of the conference on robot communication and coordination, Athens

    Google Scholar 

  131. Olfati-Saber R, Fax JA, Murray RM (2007) Consensus and cooperation in networked multi-agent systems. Proc IEEE 95(1):215–233

    Article  Google Scholar 

  132. Georgiev D, Kabamba P, Tilbury D (2008) A new model for team optimization: the effects of uncertainty on interaction. IEEE Trans Syst Man Cybern A 38(6):1234–1247

    Article  Google Scholar 

  133. Garg D, Narahari Y (2008) Mechanism design for single leader Stackelberg problems and application to procurement auction design. IEEE Trans Autom Sci Eng 5(3):377

    Article  Google Scholar 

  134. Kenney J (2010) Standards and regulations. In: Hartenstein H, Laberteaux K (eds) VANET: vehicular applications and inter-networking technologies, Intelligent transportation systems. Wiley, Chichester, pp 365–429

    Google Scholar 

  135. Stübing H, Bechler M, Heussner D, May T, Radusch I, Rechner H, Vogel P (2010) simTD: a car-to-X system architecture for field operational tests. IEEE Commun Mag 48(5):148–154

    Article  Google Scholar 

  136. US Department of Transportation (2011) Connected vehicle technology challenge. http://connectedvehicle.challenge.gov/

  137. Grand cooperative driving challenge. http://www.gcdc.net/

  138. Urmson C, Whittaker WR, Harbaugh S, Clark M, Koon P (2006) Testing driver skill for high-speed autonomous vehicles. Computer 39(12):48–51

    Article  Google Scholar 

  139. Christen F, Sandkühler D, Benmimoun A, Breuer K (2004) Verwendung des Verkehrsflusssimulationswerkzeugs PELOPS mit HiL-Funktionalität bei der Entwicklung von Fahrerassistenzsystemen. In: VDI Kongress Berechnung und Simulation im Fahrzeugbau

    Google Scholar 

  140. Jansson J, Johansson J, Gustafsson F (2002) Decision making for collision avoidance systems. In: Society of automotive engineers technical paper

    Google Scholar 

  141. Winner H, Wolf G (2009) Quo vadis, FAS? In: Winner H, Hakuli S, Wolf G (eds) Handbuch Fahrerassistenzsysteme – Grundlagen, Komponenten und Systeme für aktive Sicherheit und Komfort, Vieweg + Teubner, pp 664–673

    Google Scholar 

  142. Wahl R, Tørset T, Vaa T (2007) Large scale introduction of automated transport: which legal and administrative barriers are present? In: Proceedings of the world congress on intelligent transport systems and services, Beijing

    Google Scholar 

Download references

Acknowledgments

The authors’ research has been partially supported by Deutsche Forschungsgemeinschaft (German Research Foundation) within the Transregional Collaborative Research Center 28 “Cognitive Automobiles.”

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kym Watson .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this entry

Cite this entry

Watson, K., Frese, C., Batz, T., Beyerer, J. (2012). Cooperative Group of Vehicles and Dangerous Situations, Recognition of. In: Meyers, R.A. (eds) Encyclopedia of Sustainability Science and Technology. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-0851-3_792

Download citation

Publish with us

Policies and ethics