Skip to main content

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 6,999.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

Abiotic:

An abiotic factor is a feature or process that is not derived from, or caused by, living organisms but that might affect living organisms in their environment.

Biologically effective UV radiation:

The biologically effective UV radiation is obtained by integrating the biologically effective spectral irradiance over the whole wavelength range.

Biotic:

A biotic factor is a feature or process derived from, or caused by, living organisms, which might affect other living organisms in their environment.

Chloroplast:

Chloroplast is the site of photosynthesis. It is distinguished by its green color, caused by the presence of chlorophyll.

Chromophore:

A chemical group capable of selective light absorption resulting in the coloration of certain organic compounds. In biological molecules that serve to capture or detect light energy, the chromophore is the moiety that causes a conformational change of the molecule when hit by light.

Ecotherm:

An organism that regulates its body temperature largely by exchanging heat with its surroundings (e.g., fish, reptile, …).

Eye damage:

This includes the keratoconjunctivitis (an inflammation of the cornea and conjunctiva, snow blindness), an acute effect, and chronic damage of the eye lens, caused by absorbing UVA radiation.

Flavonoids:

An umbrella term that designates a wide spectrum of pigments (including anthocyanins, among others).

Genetic damage:

DNA absorbs UVB radiation and the absorbed energy can break bonds in the DNA. Most of the DNA breakages are repaired by proteins present in the cell nucleus, but unrepaired genetic damage of the DNA can lead to skin cancers.

Health effects:

In humans and animals, prolonged exposure to solar UV radiation may result in acute and chronic health effects on the skin, eye, and immune system. UVB exposure induces the production of vitamin D in the skin. The majority of positive health effects are related to this vitamin.

Minimal erythemal dose (MED):

The amount of UV radiation exposure required to cause a just perceptible reddening of the skin.

Mitochondria:

“Powerhouse” of the cell, which acts as the site for the production of high-energy compounds. These high-energy compounds are the vital energy source for several cellular processes.

Monomer:

A molecule that can combine with others to form a polymer.

Morphogenesis:

Biological process of growth, structure, form, or shape.

Phototaxis:

A response to a directional light stimulus that involves movement of a whole organism. This is advantageous for phototrophic organisms as they can orient themselves most efficiently to receive light for photosynthesis. Phototaxis is called positive if the movement is in the direction of increasing light intensity and negative if the direction is opposite.

Plant growth:

The rate of increase in weight and size of plant organs, such as leaf, stem, or root.

Skin damage:

Beside the sunburn (erythema), a well-known acute effect, chronic skin damage is also observed. This includes elastoses (damage of collagen fibers) and, thereby, aging of the skin and skin cancer. (The three most common skin cancers are basal cell cancer, squamous cell cancer, and melanoma, each of which is named after the type of skin cell from which it arises. Melanoma is one of the less common types of skin cancer but causes the majority (75%) of skin cancer–related deaths.)

Spectral weighting function:

Wavelength dependency of biologic efficiency of UV radiation. The multiplication of spectral irradiance and a spectral weighting function delivers the biologically effective spectral irradiance. The spectral weighting function is unique for each photobiological process.

UV (ultraviolet) radiation:

Electromagnetic energy in the wavelength range between 200 and 400 nm. In the solar spectrum on Earth’s surface the wavelength range is limited to 280 and 400 nm. The spectral range is divided in UVC (200–280 nm), UVB (280–315 nm), and UVA (315–400 nm).

Yield:

Economic product harvested from plants, for example, seed from pods of soybean, roots from carrots (Daucus carota), grain from wheat (Triticum aestivum), or seed and lint from cotton (Gossypium hursutum).

Bibliography

Primary Literature

  1. Bunsen RW, Roscoe HE (1857) Photochemische Untersuchungen. Poggendorfs Ann 100:51

    Google Scholar 

  2. Schindl A, Rosado-Schlosser B, Trautinger F (2001) Die Reziprozitätsregel in der Photobiologie. Eine Übersicht Der Hautarzt 52:779–785

    Article  CAS  Google Scholar 

  3. Diffey BL, Kochevar IE (2007) Basic principles of photobiology. In: Lim HW, Hönigsmann H, Hawk JL (eds) Photodermatology. Informa Healthcare USA, New York, pp 15–27

    Google Scholar 

  4. Schwarzschild K (1900) On the law of reciprocity for bromide of silver gelatin. Astrophys J 11:89

    Article  Google Scholar 

  5. Martin JW, Chin JW, Nguyen T (2003) Reciprocity law experiments in polymeric photodegradation: a critical review. Prog Org Coat 47:292–311

    Article  CAS  Google Scholar 

  6. Reischl S, Henrich J, Schauberger G (2000) Time course and dose-response-relationship of erythema of the pigs induced by UVB- and UVC-radiation. In: 13th international congress on photobiology, San Francisco, 1–6 July 2000, p 136

    Google Scholar 

  7. Farr PM, Besag JE, Diffey BL (1988) The time course of UVB and UVC erythema. J Investig Dermatol 91:454–457

    Article  CAS  Google Scholar 

  8. Mehlhorn G, Steiger A (1974) Künstliche UV-Strahlung in der Tierproduktion. Gustav Fischer Verlag, Jena

    Google Scholar 

  9. Kasper I (1986) Abschätzung biologischer UV-Wirkungen durch Bestrahlung von Großtieren mit künstlichen UV-Quellen. Dissertation Veterinärmedizinische Universität Wien, Wien

    Google Scholar 

  10. MacKinley AF, Diffey BL (1987) A reference action spectrum for ultraviolet induced erythema in human skin. CIE J 6:17–22

    Google Scholar 

  11. Gates FL (1930) A study of the bactericidal action of ultra violet light. III. The absorption of ultra violet light by bacteria. J Gen Physiol 14:31–42

    Article  CAS  Google Scholar 

  12. Hollaender A, Emmons CW (1941) Wavelength dependence of mutation production in the ultraviolet with special emphasis on fungi. Cold Spring Harb Symp Quant Biol 9:179–185

    Article  Google Scholar 

  13. Herschel W (1800) Investigation of the powers of the prismatic colours to heat and illuminate objects; with remarks, that prove the different refrangibility of radiant heat. To which is added, an inquiry into the method of viewing the sun advantageously, with telescopes of large apertures and high magnifying powers. Philos Trans R Soc Lond 90:255–283

    Article  Google Scholar 

  14. Herschel W (1800) Experiments on the refrangibility of the invisible rays of the sun. Philos Trans R Soc Lond 90:284–292

    Article  Google Scholar 

  15. Ritter JW (1801) Ann Phys 7:527

    Article  Google Scholar 

  16. Daubeny C (1836) On the action of light upon plants and plants upon the atmosphere. Philos Trans R Soc Lond 126:149–176

    Article  Google Scholar 

  17. Draper JW (1884) Note on decomposition of carbonic acid by the leaves of plants under the influence of yellow light. Philos Mag 25:159–173

    Google Scholar 

  18. Engelmann TW (1882) Über Sauerstoffausscheidung von Pflanzenzellen im Microspectrum. Bot Zeit 40:419–426

    Google Scholar 

  19. Hausser KW, Vahle W (1921) Die Abhängigkeit des Lichterythems und der Pigmentbildung von der Schwingungszahl (Wellenlänge) der erregenden Strahlung. Strahlentherapie 13:41–71

    Google Scholar 

  20. Coblentz WW, Stair R (1934) Data on the spectral erythemic reaction of the untanned human skin to ultraviolet radiation. Bur Stand J Res 12:13–14

    Google Scholar 

  21. Luckiesh M, Holladay LL, Taylor AH (1930) Reaction of untannted human skin to ultraviolet radiation. J Opt Soc Am 20:423–426

    Article  Google Scholar 

  22. Hausser KW, Vahle W (1927) Sonnenbrand und Sonnenbräunung. Wiss Veröfftl Siemens Konzern 6:101–120

    Google Scholar 

  23. CIE (1937) Neuvieme Session Berlin und Karlsruhe Juillet 1935. Cambridge University Press, Cambridge, UK

    Google Scholar 

  24. McKinley AF, Diffey BL (1987) A reference action spectrum for ultraviolet induced erythema in human skin. CIE J 6:17–22

    Google Scholar 

  25. Duggar BM, Hollaender A (1934) Irradiation of plant viruses and of microorganisms with monochromatic light: I. The virus of typical tobacco mosaic and serratia marcescens as influenced by ultraviolet and visible light. J Bacteriol 27:219–239

    CAS  Google Scholar 

  26. Gates FL (1934) Results of irradiating staphylococcus aureus bacteriophage with monochromatic ultraviolet light. J Exp Med 60:179–188

    Article  CAS  Google Scholar 

  27. Sonne C, Rekling E (1927) Behandlung experimenteller Rattenrachitis mit monochromatischem ultravioletten Licht. Strahlentherapie 35:552–558

    Google Scholar 

  28. Henschke U, Schulze R (1939) Über Pigmentierung durch langwelliges Ultraviolett. Strahlentherapie 65:14–42

    Google Scholar 

  29. Reiter T, Gabor D (1928) Ultraviolette Strahlen und Zellteilung. Strahlentherapie 28:125–132

    Google Scholar 

  30. Blumthaler M, Ambach W (1988) Solar UV-B albedo of various surfaces. Photochem Photobiol 54:429–432

    Article  Google Scholar 

  31. Monteith JL (1973) Principles of environmental physics. Arnold, London

    Google Scholar 

  32. Quaschning V, Hanitsch R (1998) Irradiance calculation on shaded surfaces. Sol Energy 62:369–375

    Article  Google Scholar 

  33. Blumthaler M, Ambach W, Ellinger R (1996) UV-Bestrahlung von horizontalen und vertikalen Flächen im Hochgebirge. Wetter Leben 1:25–31

    Google Scholar 

  34. Schauberger G (1990) Model for the global irradiance of the solar biologically-effective ultraviolet radiation on inclined surfaces. Photochem Photobiol 52:1029–1032

    Article  CAS  Google Scholar 

  35. Grant RH (1998) Ultraviolet irradiance of inclined planes at the top of the plant canopies. Agric For Meteorol 89:281–293

    Article  Google Scholar 

  36. Webb AR, Weihs P, Blumthaler M (1999) Spectral UV irradiance on vertical surfaces: a case study. Photochem Photobiol 69:464–470

    Article  CAS  Google Scholar 

  37. Hay JE (1979) Calculation of monthly mean solar radiation for horizontal and inclined surfaces. Sol Energy 23:301–307

    Article  Google Scholar 

  38. Schauberger G (1992) Anisotropic model for the diffuse biologically effective irradiance of solar UV radiation on inclined surfaces. Theor Appl Climatol 46:45–51

    Article  Google Scholar 

  39. Klucher TM (1979) Evaluation of models to predict insolation on tilted surfaces. Sol Energy 26:179–184

    Google Scholar 

  40. Hay JE, McKay DC (1985) Estimating solar irradiance on inclined surfaces: a review and assessment of methodologies. Int J Sol Energy 3:203–240

    Article  Google Scholar 

  41. Reindl DT, Beckmann WA, Duffie JA (1990) Diffuse fraction correlations. Sol Energy 45:1–7

    Article  Google Scholar 

  42. Utrillas MP, Marin MJ, Esteve AR, Estelles V, Tena F, Canada J et al (2009) Diffuse ultraviolet erythemal irradiance on inclined planes: a comparison of experimental and modeled data. Photochem Photobiol 85:1245–1253

    Article  CAS  Google Scholar 

  43. Mech M, Koepke P (2004) Model for UV irradiance on arbitrarily oriented surfaces. Theor Appl Climatol 77:151–158

    Article  Google Scholar 

  44. Hess M, Koepke P (2008) Modelling UV irradiances on arbitrarily oriented surfaces: effects of sky obstructions. Atmos Chem Phys 8:3583–3591

    Article  CAS  Google Scholar 

  45. Dirmhirn I (1964) Das Strahlungsfeld im Lebensraum. Akademische Verlagsgesellschaft, Frankfurt

    Google Scholar 

  46. Geiger R (1961) Das Klima der bodennahen Luftschicht, 4. Aufl. ed. Viehweg, Braunschweig

    Google Scholar 

  47. Manning B, Grigg GC (1997) Basking is not of thermoregulatory significance in the “basking” freshwater turtle Emydura signata. Copeia 1997:579–584

    Article  Google Scholar 

  48. Ferguson GW, Gehrmann WH, Karsten KB, Hammack SH, McRae M, Chen TC et al (2003) Do panther chameleons bask to regulate endogenous vitamin D3 production? Physiol Biochem Zool 76:52–59

    Article  CAS  Google Scholar 

  49. Ferguson GW, Gehrmann WH, Karsten KB, Landwer AJ, Carman EN, Chen TC et al (2005) Ultraviolet exposure and vitamin D synthesis in a sun-dwelling and a shade-dwelling species of Anolis: are there adaptations for lower ultraviolet B and dietary vitamin D3 availability in the shade? Physiol Biochem Zool 78:193–200

    Article  CAS  Google Scholar 

  50. Karsten KB, Ferguson GW, Chen T, Holick MF (2009) Panther chameleons, furcifer pardalis, behaviorally regulate optimal exposure to UV depending on dietary vitamin D status. Physiol Biochem Zool 82:218–225

    Article  CAS  Google Scholar 

  51. Bidmon HJ, Stumpf WE (1996) Vitamin D target systems in the brain of the green lizard Anolis carolinensis. Anat Embryol 193:145–160

    Article  CAS  Google Scholar 

  52. Bowmaker JK, Loew ER, Ott M (2005) The cone photoreceptors and visual pigments of chameleons. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 191:925–932

    Article  CAS  Google Scholar 

  53. Tovee MJ (1995) Ultra-violet photoreceptors in the animal kingdom: their distribution and function. Trends Ecol Evol 10:455–460

    Article  CAS  Google Scholar 

  54. Bianca W, Wegmann H (1974) Die Durchlässigkeit von Rinderhaaren für ultravio¬lette Strahlung. Schweiz Arch Tierheilk 116:114–146

    Google Scholar 

  55. Keck G, Kasper I, Schauberger G, Cabaj A (1987) Biological effects of UV-irradiation on horses with artificial UV-sources. In: Passchier WF, Bosnjakovic BFM (eds) Human exposure to ultraviolet radiation – risk and regulations. Elsevier, Amsterdam

    Google Scholar 

  56. Keck G, Kasper I, Schauberger G, Cabaj A (1988) UV-Wirkungen in Pferdesolarien? Berl Münchner Tierärztl Wochenschr 101:49–52

    CAS  Google Scholar 

  57. Chapman RS, Cooper KD, De Fabo EC, Frederick JE, Gelatt KN, Hammond SP et al (1995) Solar ultraviolet radiation and the risk of infectious disease: summary of a workshop. Photochem Photobiol 61:223–247

    Article  CAS  Google Scholar 

  58. Schauberger G (1997) Biological relevance of solar radiation to animals. Wien Tierärztl Mschr 84:2–13

    Google Scholar 

  59. Wolfe WL, Zissig GJ (1978) The infrared handbook. Office of Naval Research, Department of the Navy, Washington

    Google Scholar 

  60. Chadysiene R, Girgzdys A (2008) Ultraviolet radiation albedo of natural surfaces. J Environ Eng Landscape Manage 16:83–88

    Article  Google Scholar 

  61. Morris DP, Zagarese H, Williamson CE, Balseiro EG, Hargreaves BR, Modenutti B et al (1995) The attenuation of solar UV radiation in lakes and the role of dissolved organic carbon. Limnol Oceanogr 40:1381–1391

    Article  CAS  Google Scholar 

  62. Reitner B, Herndl GJ, Herzig A (1997) Role of ultraviolet-B radiation on photochemical and microbial oxygen consumption in a humic-rich shallow lake. Limnol Oceanogr 42:950–960

    Article  CAS  Google Scholar 

  63. Booth CR, Morrow JH (1997) The penetration of UV into natural waters. Photochem Photobiol 65:254–257

    Article  Google Scholar 

  64. Morris DP, Hargreaves BR (1997) The role of photochemical degradation of dissolved organic carbon in regulating the UV transparency of three lakes on the Pocono Plateau. Limnol Oceanogr 42:239–249

    Article  CAS  Google Scholar 

  65. Graneli W, Lindell M, Tranvik L (1996) Photo-oxidative production of dissolved inorganic carbon in lakes of different humic content. Limnol Oceanogr 41:698–706

    Article  CAS  Google Scholar 

  66. Markager S, Vincent WF (2000) Spectral light attenuation and the absorption of UV and blue light in natural waters. Limnol Oceanogr 45:642–650

    Article  CAS  Google Scholar 

  67. Vincent WF, Rae R, Laurion I, Howard-Williams C, Priscu JC (1998) Transparency of Antarctic ice-covered lakes to solar UV radiation. Limnol Oceanogr 43:618–624

    Article  Google Scholar 

  68. Sommaruga R, Psenner R (1997) Ultraviolet radiation in a high mountain lake of the Austrian Alps: air and underwater measurements. Photochem Photobiol 65:957–963

    Article  CAS  Google Scholar 

  69. Sommaruga R, Augustin G (2006) Seasonality in UV transparency of an alpine lake is associated to changes in phytoplankton biomass. Aquat Sci 68:129–141

    Article  Google Scholar 

  70. Huovinen PS, Penttilä H, Soimasuo MR (2003) Spectral attenuation of solar ultraviolet radiation in humic lakes in Central Finland. Chemosphere 51:205–214

    Article  CAS  Google Scholar 

  71. Smith RC, Baker KS (1981) Optical properties of the clearest natural waters (200–800 nm). Appl Opt 20:177–184

    Article  CAS  Google Scholar 

  72. Baker KS, Smith RC (1982) Bio-optical classification and model of natural waters. Limnol Oceanogr 27:500–509

    Article  CAS  Google Scholar 

  73. De Lange HJ (2000) The attenuation of ultraviolet and visible radiation in Dutch inland waters. Aquat Ecol 34:215–226

    Article  Google Scholar 

  74. Bukaveckas PA, Robbins-Forbes M (2000) Role of dissolved organic carbon in the attenuation of photosynthetically active and ultraviolet radiation in Adirondack lakes. Freshw Biol 43:339–354

    Article  Google Scholar 

  75. Squires MM, Lesack LFW (2003) Spatial and temporal patterns of light attenuation among lakes of the Mackenzie Delta. Freshw Biol 48:1–20

    Article  CAS  Google Scholar 

  76. Sommaruga R (2001) The role of solar UV radiation in the ecology of alpine lakes. J Photochem Photobiol B 62:35–42

    Article  CAS  Google Scholar 

  77. Smith RC, Baker KS (1978) Optical classification of natural waters. Limnol Oceanogr 23:260–267

    Article  Google Scholar 

  78. Smith RC, Baker KS (1979) Penetration of UV-B and biologically effective close-rates in natural waters. Photochcm Photobiol 29:311–323

    Article  CAS  Google Scholar 

  79. Jerlov NG (1968) Optical oceanography. Elsevier, Amsterdam

    Google Scholar 

  80. Williamson CE, Stemberger RS, Morris DP, Frost TM, Paulsen SG (1996) Ultraviolet radiation in North American lakes: attenuation estimates from DOC measurements and implications for plankton communities. Limnol Oceanogr 41:1024–1034

    Article  CAS  Google Scholar 

  81. Setlow RB (1974) The wavelengths in sunlight effective in producing skin cancer: a theoretical analysis. Proc Natl Acad Sci USA 71:3363–3366

    Article  CAS  Google Scholar 

  82. Grenfell TC, Warren SG, Mullen PC (1994) Reflection of solar radiation by the Antarctic snow surface at ultraviolet, visible, and near-infrared wavelengths. J Geophys Res 99:18669–18684

    Article  Google Scholar 

  83. Blumthaler M, Ambach W (1988) Solar UVB-albedo of various surfaces. Photochem Photobiol 48:85–88

    Article  CAS  Google Scholar 

  84. Meinander O, Kontu A, Lakkala K, Heikkilä A, Ylianttila L, Toikka M (2008) Diurnal variations in the UV albedo of arctic snow. Atmos Chem Phys 8:6551–6563

    Article  CAS  Google Scholar 

  85. Perovich DK (1993) A theoretical model of ultraviolet light transmission through Antarctic sea ice. J Geophys Res 98:22579–22588

    Article  Google Scholar 

  86. Cockell CS, Rettberg P, Horneck G, Wynn-Williams DD, Scherer K, Gugg-Helminger A (2002) Influence of ice and snow covers on the UV exposure of terrestrial microbial communities: dosimetric studies. J Photochem Photobiol B 68:23–32

    Article  CAS  Google Scholar 

  87. Warren SG, Brandt RE, Grenfell TC (2006) Visible and near-ultraviolet absorption spectrum of ice from transmission of solar radiation into snow. Appl Opt 45:5320–5334

    Article  CAS  Google Scholar 

  88. King MD, France JL, Fisher FN, Beine HJ (2005) Measurement and modelling of UV radiation penetration and photolysis rates of nitrate and hydrogen peroxide in Antarctic sea ice: an estimate of the production rate of hydroxyl radicals in first-year sea ice. J Photochem Photobiol A 176:39–49

    Article  CAS  Google Scholar 

  89. Perovich DK (2001) UV radiation and the optical properties of sea ice and snow. In: Hessen D (ed) UV radiation and Arctic ecosystems, pp 73–89

    Google Scholar 

  90. Lesser MP, Lamare MD, Barker MF (2004) Transmission of ultraviolet radiation through the Antarctic annual sea ice and its biological effects on sea urchin embryos. Limnol Oceanogr 49:1957–1963

    Article  Google Scholar 

  91. Fritsen CH, Priscu JC (1999) Seasonal change in the optical properties of the permanent ice cover on Lake Bonney, Antarctica: consequences for lake productivity and phytoplankton dynamics. Limnol Oceanogr 44:447–454

    Article  Google Scholar 

  92. Grenfell TC, Maykutt GA (1977) The optical properties of ice and snow in the Arctic basin. J Glaciol 18:445–463

    Google Scholar 

  93. Belzile C, Gibson JAE, Vincent WF (2002) Colored dissolved organic matter and dissolved organic carbon exclusion from lake ice: implications for irradiance transmission and carbon cycling. Limnol Oceanogr 47:1283–1293

    Article  CAS  Google Scholar 

  94. Belzile C, Johannessen SC, Gosselin M, Demers S, Miller WL (2000) Ultraviolet attenuation by dissolved and particulate constituents of first-year ice during late spring in an Arctic polynya. Limnol Oceanogr 45:1265–1273

    Article  CAS  Google Scholar 

  95. Kepner JRL, Wharton RA Jr, Collier RD, Cockell CS, Jeffrey WH (2000) UV radiation and potential biological effects beneath the perennial ice cover of an antarctic lake. Hydrobiologia 427:155–165

    Article  CAS  Google Scholar 

  96. Felip M, Camarero L, Catalan J (1999) Temporal changes of microbial assemblages in the ice and snow cover of a high mountain lake. Limnol Oceanogr 44:973–987

    Article  Google Scholar 

  97. Felip M, Wille A, Sattler B, Psenner R (2002) Microbial communities in the winter cover and the water column of an alpine lake: system connectivity and uncoupling. Aquat Microb Ecol 29:123–134

    Article  Google Scholar 

  98. Savage DC (1977) Microbial ecology of the gastrointestinal tract. Annu Rev Microbiol 31:107–133

    Article  CAS  Google Scholar 

  99. Berg RD (1996) The indigenous gastrointestinal microflora. Trends Microbiol 4:430–435

    Article  CAS  Google Scholar 

  100. Cristiani H (1893) Analyse bacteriologique de l’air des hauteurs, puise un voyage en ballon. I’Inst Pasteur 7:665–671

    Google Scholar 

  101. Harz CO (1904) Bakteriologische Untersuchungen der freien Atmosphäre mittels Luftballons nebst Bemerkungen über den atmosphärischen Staub. Fb dtsch Luftsch Verb 1904:293–302

    Google Scholar 

  102. Rogers LA, Meier FC (1936) U.S. Army Air Corps stratosphere flight of 1935 in the balloon “Explorer II.” Technical papers, The National Geographic Society, Washington, DC, pp 146–151

    Google Scholar 

  103. Imshenetsky AA, Lysenko SV, Kazakov GA (1978) Upper boundary of the biosphere. Appl Environ Microbiol 35:1–5

    CAS  Google Scholar 

  104. Fulton JD (1966) Microorganisms of the upper atmosphere. 3. Relationship between altitude and micropopulation. Appl Microbiol 14:237–240

    CAS  Google Scholar 

  105. Yang Y, Itahashi S, Yokobori S, Yamagishi A (2008) UV-resistant bacteria isolated from upper troposphere and lower stratosphere. Biol Sci Space 22:18–25

    Article  Google Scholar 

  106. Tong Y, Che F, Xu X, Chen M, Ye B (1993) Population study of atmospheric bacteria at the Fengtai district of Beijing on two representative days. Aerobiologia 9:69–74

    Article  Google Scholar 

  107. Meier FC, Lindbergh CA (1935) Collecting micro-organisms from the Arctic atmosphere. Sci Mon 40:5–20

    Google Scholar 

  108. Griffin DW, Garrison VH, Herman JR, Shinn EA (2001) African desert dust in the Caribbean atmosphere: microbiology and public health. Aerobiologia 17:203–213

    Article  Google Scholar 

  109. Griffin DW, Kubilay N, Koçak M, Gray MA, Borden TC, Shinn EA (2007) Airborne desert dust and aeromicrobiology over the Turkish Mediterranean coastline. Atmos Environ 41:4050–4062

    Article  CAS  Google Scholar 

  110. Griffin DW, Westphal DL, Gray MA (2006) Airborne microorganisms in the African desert dust corridor over the mid-Atlantic ridge, Ocean Drilling Program, Leg 209. Aerobiologia 22:211–226

    Article  Google Scholar 

  111. Mims SA, Mims FM III (2004) Fungal spores are transported long distances in smoke from biomass fires. Atmos Environ 38:651–655

    Article  CAS  Google Scholar 

  112. Brown JKM, Hovmoll MS (2002) Aerial dispersal of pathogens on the global and continental scales and its impact on plant disease. Science 297:537–541

    Article  CAS  Google Scholar 

  113. Tong Y, Lighthart B (1997) Solar radiation is shown to select for pigmented bacteria in the ambient outdoor atmosphere. Photochem Photobiol 65:103–106

    Article  CAS  Google Scholar 

  114. Reiling F (2000) Dissemination of bacteria from the mouth during speaking, coughing, and otherwise. JAMA 284:156

    Article  Google Scholar 

  115. Giese AC (1976) Living with our suns’s ultraviolet rays. Plenum, New York

    Book  Google Scholar 

  116. Mims FM III (2005) Avian influenza and UV-B blocked by biomass smoke. Environ Health Perspect 113(12):A806–A807

    Article  Google Scholar 

  117. Coffin RB, Velinsky DJ, Devereux R, Price WA, Cifuentes LA (1990) Stable carbon isotope analysis of nucleic acids to trace sources of dissolved substrates used by estuarine bacteria. Appl Environ Microbiol 56:2012–2020

    CAS  Google Scholar 

  118. Paul JH, Jeffrey WH, DeFlaun M (1985) Particulate DNA in subtropical oceanic and estuarine planktonic environments. Mar Biol 90:95–101

    Article  CAS  Google Scholar 

  119. Paul JH, Carlson DJ (1984) Genetic material in the marine environment: implication for bacterial DNA. Limnol Oceanogr 29:1091–1097

    Article  CAS  Google Scholar 

  120. Fuhrman JA, Sleeter TD, Carlson CA, Proctor LM (1989) Dominance of bacterial biomass in the Sargasso Sea and its ecological implications. Mar Ecol Prog Ser 57:207–217

    Article  Google Scholar 

  121. Boehme J, Frischer ME, Jiang SC, Kellogg CA, Pichard S, Rose JB et al (1993) Viruses, bacterioplankton, and phytoplankton in the southeastern Gulf of Mexico: distribution and contribution to oceanic DNA pools. Mar Ecol Prog Ser 97:1–10

    Article  Google Scholar 

  122. Cho BC, Azam F (1990) Biogeochemical significance of bacterial biomass in the ocean’s euphotic zone. Mar Ecol Prog Ser 63:253–259

    Article  CAS  Google Scholar 

  123. Azam F, Fenchel T, Field JG, Gray JS, Meyer-Reil LA, Thlngstad F (1983) The ecological role of water-column nilcrobes In the sea. Mar Ecol Prog Ser 10:257–263

    Article  Google Scholar 

  124. Garcia-Pichel F (1994) A model for internal self-shading in planktonic organisms and its implications for the usefulness of ultraviolet sunscreens. Limnol Oceanogr 39:1704–1717

    Article  Google Scholar 

  125. Aas P, Lyons MM, Pledger R, Mitchell DL, Jeffrey WH (1996) Inhibition of bacterial activities by solar radiation in nearshore waters and the Gulf of Mexico. Aquat Microb Ecol 11:229–238

    Article  Google Scholar 

  126. Sieracki ME, Sieburth JM (1986) Sunlight-induced growth delay of planktonic marine bacteria in filtered seawater. Mar Ecol Prog Ser 33:19–27

    Article  Google Scholar 

  127. Bailey CA, Neihof RA, Tabor PS (1983) Inhibitory effect of solar radiation on amino acid uptake in Chesapeake Bay bacteria. Appl Environ Microbiol 46:44–49

    CAS  Google Scholar 

  128. Herndl GJ, Muller-Niklas G, Frick J (1993) Major role of ultraviolet-B in controlling bacterioplankton growth in the surface layer of the ocean. Nature 361:717–719

    Article  Google Scholar 

  129. Alonso-Sáez L, Gasol JM (2007) Seasonal variations in the contributions of different bacterial groups to the uptake of low-molecular-weight compounds in Northwestern Mediterranean coastal waters. Appl Environ Microbiol 73:3528–3535

    Article  CAS  Google Scholar 

  130. Häder DP, Kumar HD, Smith RC, Worrest RC (2007) Effects of solar UV radiation on aquatic ecosystems and interactions with climate change. Photochem Photobiol Sci 6:267–285

    Article  CAS  Google Scholar 

  131. Joux F, Jeffrey WH, Lebaron P, Mitchell DL (1999) Marine bacterial isolates display diverse responses to UV-B radiation. Appl Environ Microbiol 65:3820–3827

    CAS  Google Scholar 

  132. Sommaruga R, Obernosterer I, Herndl GJ, Psenner R (1997) Inhibitory effect of solar radiation on thymidine and leucine incorporation by freshwater and marine bacterioplankton. Appl Environ Microbiol 63:4178–4184

    CAS  Google Scholar 

  133. Halac S, Felip M, Camarero L, Sommaruga-Wögrath S, Psenner R, Catalan J et al (1997) An in situ enclosure experiment to test the solar UVB impact on plankton in a high-altitude mountain lake. I. Lack of effect on phytoplankton species composition and growth. J Plankton Res 19:1671–1686

    Article  CAS  Google Scholar 

  134. Winter C, Moeseneder MM, Herndl GJ (2001) Impact of UV radiation on bacterioplankton community composition. Appl Environ Microbiol 67:665–672

    Article  CAS  Google Scholar 

  135. Jiang H, Dong H, Yu B, Liu X, Li Y, Ji S et al (2007) Microbial response to salinity change in Lake Chaka, a hypersaline lake on Tibetan plateau. Environ Microbiol 9:2603–2621

    Article  CAS  Google Scholar 

  136. Liu Y, Yao T, Jiao N, Kang S, Zeng Y, Huang S (2006) Microbial community structure in moraine lakes and glacial meltwaters, Mount Everest. FEMS Microbiol Lett 265:98–105

    Article  CAS  Google Scholar 

  137. Zhang G, Niu F, Ma X, Liu W, Dong M, Feng H et al (2007) Phylogenetic diversity of bacteria isolates from the Qinghai-Tibet Plateau permafrost region. Can J Microbiol 53:1000–1010

    Article  CAS  Google Scholar 

  138. Zhang G, Ma X, Niu F, Dong M, Feng H, An L et al (2007) Diversity and distribution of alkaliphilic psychrotolerant bacteria in the Qinghai-Tibet Plateau permafrost region. Extremophiles 11:415–424

    Article  CAS  Google Scholar 

  139. Dib J, Motok J, Zenoff VF, Ordonez O, Farias ME (2008) Occurrence of resistance to antibiotics, UV-B, and arsenic in bacteria isolated from extreme environments in high-altitude (above 4400 m) Andean wetlands. Curr Microbiol 56:510–517

    Article  CAS  Google Scholar 

  140. Fernandez-Zenoff V, Sineriz F, Farias ME (2006) Diverse responses to UV-B radiation and repair mechanisms of bacteria isolated from high-altitude aquatic environments. Appl Environ Microbiol 72:7857–7863

    Article  CAS  Google Scholar 

  141. Ordonez OF, Flores MR, Dib JR, Paz A, Farias ME (2009) Extremophile culture collection from Andean lakes: extreme pristine environments that host a wide diversity of microorganisms with tolerance to UV radiation. Microb Ecol 58:461–473

    Article  Google Scholar 

  142. Kepner RL Jr, Wharton RA Jr, Suttle CA (1998) Viruses in Antarctic lakes. Limnol Oceanogr 43:1754–1761

    Article  Google Scholar 

  143. Downes A, Blunt TP (1877) Researches on the effect of light upon bacteria and other organisms. Proc R Soc Med 26:488–500

    Article  Google Scholar 

  144. Hertel E (1904) Ueber Beeinflussung des Organismus durch Licht, speziell durch die chemisch wirksamen Strahlen. Z Allg Physiologie 4:1–43

    Google Scholar 

  145. Hertel E (1905) Ueber physiologische Wirkung von Strahlen verschiedener Wellenlänge. Z Allg Physiologie 5:95–122

    Google Scholar 

  146. Hockberger PE (2002) A history of ultraviolet photobiology for humans, animals and microorganisms. Photochem Photobiol 76:561–579

    Article  CAS  Google Scholar 

  147. Cabaj A, Sommer R, Pribil W, Haider T (2002) The spectral UV sensitivity of microorganisms used in biodosimetry. Water Sci Technol Water Supply 2(3):175–181

    Google Scholar 

  148. Rauth AM (1965) The physical state of viral nucleic acid and the sensitivity of viruses to ultraviolet light. Biophys J 5:257–273

    Article  CAS  Google Scholar 

  149. EPA (1999) Alternative disinfectants and oxidants guidance manual. EPA 815-R-99-014, United States Environmental Protection Agency, Cincinnati

    Google Scholar 

  150. Solsona F, Méndez JP (2003) Water disinfection. PAHO/CEPIS/PUB/03.89

    Google Scholar 

  151. WHO (2006) Guidelines for safe recreational water environments, vol 2, Swimming pools and similar environments. WHO, Geneva

    Google Scholar 

  152. WHO (2003) Guidelines for safe recreational water environments, vol 1, Coastal and fresh waters. WHO, Geneva

    Google Scholar 

  153. Henry V, Helbronner A, Recklinghausen M (1910) Nouvelles recherches sur la sterilization de grandes quantited d’eau par les rayons ultraviolets. Comp Rend Acad Sci 151:677–680

    Google Scholar 

  154. Wegelin M, Canonica S, Mechsner K, Fleischmann T, Pesaro F, Metzler A (1994) Solar water disinfection: scope of the process and analysis of radiation experiments. Aqua J Water Supply Res Technol 43:154–169

    Google Scholar 

  155. McGuigan KG, Joyce TM, Conroy RM, Gillespie JB, Elmore-Meegan M (1998) Solar disinfection of drinking water contained in transparent plastic bottles: characterizing the bacterial inactivation process. J Appl Microbiol 84:1138–1148

    Article  CAS  Google Scholar 

  156. Navntoft C, Ubomba-Jaswa E, McGuigan KG, Fernández-Ibáñez P (2008) Effectiveness of solar disinfection using batch reactors with non-imaging aluminium reflectors under real conditions: natural well-water and solar light. J Photochem Photobiol B 93:155–161

    Article  CAS  Google Scholar 

  157. Sommer B, Mariño A, Solarte Y, Salas ML, Dierolf C, Valiente C et al (1997) SODIS – An emerging water treatment process. J Water Supply Res Technol AQUA 46:127–137

    Google Scholar 

  158. Spiewak I, Benmair R, Messalem R, Radchenko O (1998) Water detoxification and disinfection using high solar concentration and homogeneous photocatalysts. J Chem Sci 110:229–238

    CAS  Google Scholar 

  159. Ubomba-Jaswa E, Fernández-Ibáñez P, Navntoft C, Polo-López MI, McGuigan KG (2010) Investigating the microbial inactivation efficiency of a 25 L batch solar disinfection (SODIS) reactor enhanced with a compound parabolic collector (CPC) for household use. J Chem Technol Biotechnol 85:1028–1037

    Article  CAS  Google Scholar 

  160. Hijnen WAM, Beerendonk EF, Medema GJ (2006) Inactivation credit of UV radiation for viruses, bacteria and protozoan (oo)cysts in water: a review. Water Res 40:3–22

    Article  CAS  Google Scholar 

  161. Nikaido SS, Johnson CH (2000) Daily and circadian variation in survival from ultraviolet radiation in Chlamydomonas reinhardtii. Photochem Photobiol 71:758–765

    Article  CAS  Google Scholar 

  162. Nicholson WL, Munakata N, Horneck G, Melosh HJ, Setlow P (2000) Resistance of Bacillus endospores to extreme terrestrial and extraterrestrial environments. Microbiol Mol Biol Rev 64:548–572

    Article  CAS  Google Scholar 

  163. Zepp RG, Erickson DJ III, Paul ND, Sulzberger B (2007) Interactive effects of solar UV radiation and climate change on biogeochemical cycling. Photochem Photobiol Sci 6:286–300

    Article  CAS  Google Scholar 

  164. Zepp RG, Callaghan TV, Erickson DJ (1998) Effects of enhanced solar ultraviolet radiation on biogeochemical cycles. J Photochem Photobiol B 46:69–82

    Article  CAS  Google Scholar 

  165. Zepp RG, Callaghan TV, Erickson DJ (1995) Effects of increased solar ultraviolet radiation on biogeochemical cycles. Ambio 24:181–187

    Google Scholar 

  166. Sagripanti JL, Lytle CD (2007) Inactivation of influenza virus by solar radiation. Photochem Photobiol 83:1278–1282

    Article  CAS  Google Scholar 

  167. Kripke ML (1984) Immunologic unresponsiveness induced by UV radiation. Immunol Rev 80:87–102

    Article  CAS  Google Scholar 

  168. Lipsitch M, Viboud C (2009) Influenza seasonality: lifting the fog. Proc Natl Acad Sci USA 106:3645–3646

    Article  CAS  Google Scholar 

  169. Hollosy F (2002) Effects of ultraviolet radiation on plant cells. Micron 33:179–197

    Article  CAS  Google Scholar 

  170. Prasad PVV, Kakani VG, Reddy KR (2003) Plants and the environment: ozone depletion. In: Encyclopedia of applied plant sciences. Elsevier Academic, Oxford, pp 749–756

    Google Scholar 

  171. Jagger J (1967) Introduction to research in photobiology. Prentice Hall, Englewood Cliffs

    Google Scholar 

  172. Kakani VG, Reddy KR, Zhao D, Sailaja K (2003) Field crop responses to ultraviolet-B radiation: a review. Agric For Meteorol 120:191–218

    Article  Google Scholar 

  173. Roosien J, van Klaveren P, Van Vloten-Doting L (1983) Competition between the RNA 3 molecules of wildtype alfalfa mosaic virus and the temperature-sensitive mutant Tb ts 7(UV). Plant Mol Biol 2:113–118

    Article  CAS  Google Scholar 

  174. Cuadra P, Herrera RI, Fajardo V (2004) Effects of UV-B radiation on the Patagonian Jaborosa magellanica Brisben. J Photochem Photobiol B 76:61–68

    CAS  Google Scholar 

  175. Mohr H, Schopfer P (1992) Pflanzenphysiologie, 4th edn. Springer, Berlin/Heidelberg

    Google Scholar 

  176. Mazza CA, Battista D, Zima AM, Szwarcberg BM, Giordano CV, Acevedo A et al (1999) The effects of solar ultraviolet-B radiation on the growth and yield of barley are accompanied by increased DNA damage and antioxidant responses. Plant Cell Environ 22:61–70

    Article  CAS  Google Scholar 

  177. Correia CM, Coutinho JF, Bjorn LO, Torres PJMG (2000) Ultraviolet-B radiation and nitrogen effects on growth and yield of maize under Mediterranean field conditions. Eur J Agron 12:117–125

    Article  CAS  Google Scholar 

  178. Pal M, Sengupta UK, Srivastava AC, Jain V, Meena RC (1999) Changes in growth and photosynthesis of mungbean induced by UV-B radiation. Indian J Plant Physiol 4:79–84

    CAS  Google Scholar 

  179. Mepsted R, Paul N, Stephen J, Nogues S, Corlett JE, Baker NR et al (1996) Effects of enhanced UV-B radiation on pea (Pisum sativum L.) grown under field conditions. Glob Change Biol 2:325–334

    Article  Google Scholar 

  180. Tevini M, Mark U, Saile-Mark M (1991) Effects of enhanced solar UV-B radiation on growth and function of crop plant seedlings. Curr Top Plant Biochem Physiol 10:13–31

    Google Scholar 

  181. Gonzalez R, Mepsted R, Wellburn AR, Paul ND (1998) Non-photosynthetic mechanisms of growth reduction in pea (Pisum sativum L.) exposed to UV-B radiation. Plant Cell Environ 21:23–32

    Article  CAS  Google Scholar 

  182. Kumagai T, Hidema J, Kang HS, Sato T (2001) Effects of supplemental UV-B radiation on the growth and yield of two cultivars of Japanese lowland rice (Oryza sativa L.) under the field in a cool rice-growing region of Japan. Agric Ecosyst Environ 83:201–208

    Article  Google Scholar 

  183. Taylor RM, Tobin AK, Bray CM (1997) DNA damage and repair in plants. In: Lumsden PJ (ed) Plants and UVB responses to environmental changes. Cambridge University Press, Cambridge

    Google Scholar 

  184. Robberecht R, Caldwell MM (1978) Leaf transmittance of ultraviolet radiation and its implications for plant sensitivity to ultraviolet-radiation induced injury. Oceologia 32:277–287

    Article  Google Scholar 

  185. Caldwell MM, Robberecht R, Flint SD (1983) Internal filters: prospects for UV-accumulation in higher plants. Physiol Plant 58:445–450

    Article  CAS  Google Scholar 

  186. Tevini M, Iwanzik W, Teramura AH (1983) Effects of UV-B radiation on plants during mild water stress. II Effects on growth, protein, and flavonoid content. Z Pflanzenphysiol 110:459–467

    CAS  Google Scholar 

  187. Beggs CJ, Schneider-Ziebert U, Wellmann E (1986) UV-B radiation and Adaptive Mechanisms in Plants. In: Worrest RC, Caldwell MM (eds) Stratospheric ozone reduction, solar ultraviolet radiation and plant life. Springer, Berlin, pp 235–250

    Chapter  Google Scholar 

  188. Bischof K, Wiencke C (2006) Auswirkung der Zunahme der UV-Strahlung. In: Lozan J, Graál H, Hubberten HW, Hupfer P, Piepenburg D (eds) Warnsignale aus den Polarregionen. Druckerei in St. Pauli, Hamburg, pp 259–263

    Google Scholar 

  189. Wiencke C, Roleda MY, Gruber A, Clayton MN, Bischof K (2006) Susceptibility of zoospores to UV radiation determines upper depth distribution limit of Arctic kelps: evidence through field experiments. J Ecol 94:455–463

    Article  Google Scholar 

  190. Johansson G, Snoeijs P (2002) Macroalgal photosynthetic responses to light in relation to thallus morphology and depth zonation. Mar Ecol Prog Ser 244:63–72

    Article  Google Scholar 

  191. Roleda MY, Wiencke C, Hanelt D, van de Poll WH, Gruber A (2005) Sensitivity of Laminariales zoospores from Helgoland (North Sea) to ultraviolet and photosynthetically active radiation: implications for depth distribution and seasonal reproduction. Plant Cell Environ 28:466–479

    Article  Google Scholar 

  192. Lotze HK, Worm B, Molis M, Wahl M (2002) Effects of UV radiation and consumers on recruitment and succession of a marine macrobenthic community. Mar Ecol Prog Ser 243:57–66

    Article  Google Scholar 

  193. Bischof K, Hanelt D, Aguilera J, Karsten U, Vögele B, Sawall T et al (2002) Seasonal variation in ecophysiological patterns in macroalgae from an artic fjord. I. Sensitivity of photosynthesis to ultraviolet radiation. Mar Biol 140:1097–1106

    Article  CAS  Google Scholar 

  194. de Bakker NVJ, van Bodegom PM, van de Poll WH, Boelen E, Nat E, Rozema J et al (2005) Is UV-B radiation affecting charophycean algae in shallow freshwater systems? New Phytol 166:957–966

    Article  Google Scholar 

  195. Martinez-Abaigar J, Nunez-Olivera E, Beaucourt N, Garcia-Alvaro MA, Tomas R, Arroniz M (2003) Different physiological responses of two aquatic bryophytes to enhanced ultraviolet-B radiation. J Bryol 25:17–30

    Article  Google Scholar 

  196. Figueroa FL, Jimenez C, Vinegla B, Perez-Rodriguez E, Aguilera J, Flores-Moya A et al (2002) Effects of solar UV radiation on photosynthesis of the marine angiosperm Posidonia oceanica from southern Spain. Mar Ecol Prog Ser 230:59–70

    Article  Google Scholar 

  197. Brandt LA, Koch EW (2003) Periphyton as a UV-B filter on seagrass leaves: a result of different transmittance in the UV-B and PAR ranges. Aquat Bot 76:317–327

    Article  Google Scholar 

  198. Li FR, Peng SL, Chen BM, Hou YP (2010) A meta-analysis of the responses of woody and herbaceaous plants to elevated ultraviolet-B radiation. Acta Oecologica 36:1–9

    Article  Google Scholar 

  199. Rozema J, Van de Staaij JWM, Tosserams M (1997) Effects of UV-B radiation on plants from agro- and natural ecosystems. In: Lumsden PJ (ed) Plants and UV-B responses to environmental change. Cambridge University Press, Cambridge

    Google Scholar 

  200. Caldwell MM, Flint SD (1994) Solar ultraviolet radiation and ozone layer change: implications for crop plants. In: ASo A (ed) Physiology and determination of crop yield. American Society of Agronomy, Madison

    Google Scholar 

  201. Sullivan JH, Teramura AH (1992) The effects of UV-B radiation on loblolly pine. 2. Growth of field-grown seedlings. Tree Struct Funct 6:115–120

    Google Scholar 

  202. Naidu SL, Sullivan JH, Teramura AH, DeLucia EH (1993) The effects of ultraviolet-B radiation on photosynthesis of different aged needles in field-grown loblolly-pine. Tree Physiol 12:151–162

    Article  CAS  Google Scholar 

  203. Bassman JH, Edwards GE, Robberecht R (2002) Long-term exposure to enhanced UV-B radiation is not detrimental to growth and photosynthesis in Douglas-fir. New Phytol 154:107–120

    Article  CAS  Google Scholar 

  204. Trost-Sedej T, Gaberscik A (2008) The effects of enhanced UV-B radiation on physiological activity and growth of Norway spruce planted outdoors over 5 years. Trees 22:423–435

    Article  CAS  Google Scholar 

  205. McLeod AR, Newsham KK (1997) Impacts of elevated UV-B on forest ecosystems. In: Lumsden PJ (ed) Plants and UV-B responses to environmental change, 64th edn. Cambridge University Press, Cambridge

    Google Scholar 

  206. Karabourniotis G, Papadopoulos K, Papamarkou M, Manetas Y (1992) Ultraviolet-B radiation absorbing capacity of leaf hairs. Physiol Plant 86:414–418

    Article  Google Scholar 

  207. Karabourniotis G, Kyparissis A, Manetas Y (1993) Leaf hairs of Olea europaea protect underlying tissues agains ultraviolet-B radiation damage. Environ Exp Bot 33:341–345

    Article  Google Scholar 

  208. Grammatikopoulos G, Karabourniotis G, Kyparissis A, Petropoulou Y, Manetas Y (1994) Leaf hairs of olive (Olea europaea) prevent stomatal closure by ultraviolet-B radiation. Aust J Plant Physiol 21:293–301

    Article  CAS  Google Scholar 

  209. Day TA, Howells BW, Rice WJ (1994) Ultraviolet absorption and epidermal-transmittance spectra in foliage. Physiol Plant 92:207–218

    Article  CAS  Google Scholar 

  210. Nedunchezhian N, Kulandaivelu GL (1991) Effects of UV-B enhanced radiation on ribulose 1, 5-bisphophate carboxylase in leaves of Vigna sinensis. Photosynthetica 25:431–435

    CAS  Google Scholar 

  211. Premkumar A, Kulandaivelu G (1996) Influence of ultraviolet-B enhanced solar radiation on growth and photosynthesis of potassium deficient cowpea seedlings. Photosynthetica 32:521–528

    CAS  Google Scholar 

  212. Basiouny FM (1986) Sensitivity of corn, oats, peanuts, rice, rye, sorghum, soybean and tobacco to UV-B radiation under growth chamber conditions. J Agron Crop Sci 157:31–35

    Article  Google Scholar 

  213. Pal M, Jain V, Sengupta UK (1998) Influence of enhanced UV-B radiation on mustard: cultivar response. Indian J Plant Physiol 3:188–193

    Google Scholar 

  214. Singh A (1995) Influence of enhanced UV-B radiation on tropical legumes. Trop Ecol 36:249–252

    CAS  Google Scholar 

  215. Li Y, Yue M, Wang XL (1998) Effects of enhanced ultraviolet-B radiation on crop structure, growth and yield components of spring wheat under field conditions. Field Crops Res 57:253–263

    Article  Google Scholar 

  216. Teramura AH, Murali NS (1986) Intraspecific differences in growth and yield of soybean exposed to ultraviolet-B radiation under greenhouse and field conditions. Environ Exp Bot 26:89–95

    Article  Google Scholar 

  217. Al-Oudat M, Baydoun SA, Mohammad A (1989) Effects of enhanced UV-B on growth and yield of two Syrian crops wheat (Triticum durum var. Horani) and broad beans (Vicia faba) under field conditions. Environ Exp Bot 40(1):11–16

    Article  Google Scholar 

  218. Finnie JW, Bostock DE (1979) Skin neoplasia in dogs. Aust Vet J 55:602–604

    Article  CAS  Google Scholar 

  219. Fairham J, Harcourt-Brown FM (1999) Preliminary investigation of the vitamin D status of pet rabbits. Vet Rec 145:452–454

    Article  CAS  Google Scholar 

  220. Hazewinkel HAW, Tryfonidou MA (2002) Vitamin D3 metabolism in dogs. Mol Cell Endocrinol 197:23–33

    Article  CAS  Google Scholar 

  221. Morris JG (1999) Ineffective vitamin D synthesis in cats is reversed by an inhibitor of 7-dehydrocholestrol-Δ7-reductase. J Nutr 129:903–908

    CAS  Google Scholar 

  222. How KL, Hazewinkel HAW, Mol JA (1994) Dietary vitamin D dependence of cat and dog due to inadequate cutaneous synthesis of vitamin D. Gen Comp Endocrinol 96:12–18

    Article  CAS  Google Scholar 

  223. How KL, Hazewinkel HA, Mol JA (1995) Photosynthesis of vitamin D in the skin of dogs cats and rats. Vet Q 17(Suppl 1):S29

    Article  Google Scholar 

  224. Brommage R, Miller SC, Langman CB, Bouillon R, Smith R, Bourdeau JE (1988) The effects of chronic vitamin D deficiency on the skeleton in the adult rabbit. Bone 9:131–139

    Article  CAS  Google Scholar 

  225. Mellanby RJ, Mee AP, Berry JL, Herrtage ME (2005) Hypercalcaemia in two dogs caused by excessive dietary supplementation of vitamin D. J Small Anim Pract 46:334–338

    Article  CAS  Google Scholar 

  226. Schulze C, Rothuizen J, Van Sluijs FJ, Hazewinkel HAW, Van Den Ingh TSGAM (2000) Extrahepatic biliary atresia in a border collie. J Small Anim Pract 41:27–30

    Article  CAS  Google Scholar 

  227. Ladds PW, Kraft H, Sokale A, Trueman KF (1983) Neoplasms of the skin of dogs in tropical Queensland. Aust Vet J 60:87–88

    Article  CAS  Google Scholar 

  228. Teifke JP, Lohr CV (1996) Immunohistochemical detection of P53 overexpression in paraffin wax-embedded squamous cell carcinomas of cattle, horses, cats and dogs. J Comp Pathol 114:205–210

    Article  CAS  Google Scholar 

  229. UNEP (1991) Environmental effects of ozone depletion: 1991 update. United Nations Environment Programme (UNEP), Nairobi

    Google Scholar 

  230. Gross TL, Ihrke PJ, Walder EJ, Affolter VK (2005) Skin diseases of the dog and cat: clinical and histopathologic diagnosis. Blackwell, Oxford

    Book  Google Scholar 

  231. Moss LC, Severin GA (1963) Tattooing as therapy for chronic solar dermatitis (Collie nose) in the dog. J Am Vet Med Assoc 142:609–610

    CAS  Google Scholar 

  232. Nikula KJ, Benjamin SA, Angleton GM, Saunders WJ, Lee AC (1992) Ultraviolet radiation, solar dermatosis, and cutaneous neoplasia in beagle dogs. Radiat Res 129:11–18

    Article  CAS  Google Scholar 

  233. Nielsen SW, Cole CR (1960) Cutaneous epithelial neoplasms of the dog-a report of 153 cases. Am J Vet Res 21:931

    CAS  Google Scholar 

  234. Nesbitt GH (1983) Canine and feline dermatology: a systematic approach. Lea & Febiger, Philadelphia

    Google Scholar 

  235. Hargis AM, Thomassen RW, Phemister RD (1977) Chronic dermatosis and cutaneous squamous cell carcinoma in the beagle dog. Vet Pathol 14:218–228

    Article  CAS  Google Scholar 

  236. Jörger K (1988) Skin tumors in cats. Occurrence and frequency in the research material (biopsies from 1984 to 1987) of the Institute for Veterinary Pathology, Zurich. Schweiz Arch Tierheilk 130:559–569

    Google Scholar 

  237. Dorn CR, Taylor DO, Schneider R (1971) Sunlight exposure and risk of developing cutaneous and oral squamous cell carcinomas in white cats. J Natl Cancer Inst 46:1073–1078

    CAS  Google Scholar 

  238. Almeida EMP, Caraca RA, Adam RL, Souza EM, Metze K, Cintra ML (2008) Photodamage in feline skin: clinical and histomorphometric analysis. Vet Pathol 45:327–335

    Article  CAS  Google Scholar 

  239. Slatter DH, Edwards ME, Hawkins CD, Wilcox GE (1982) A national survey of the occurrence of infectious bovine keratoconjunctivitis. Aust Vet J 59:65–68

    Article  CAS  Google Scholar 

  240. Méndez A, Pérez J, Ruiz-Villamor E, García R, Martín MP, Mozos E (1997) Clinicopathological study of an outbreak of squamous cell carcinoma in sheep. Vet Rec 141:597–600

    Google Scholar 

  241. Payne RJ, Lean MS, Greet TRC (2009) Third eyelid resection as a treatment for suspected squamous cell carcinoma in 24 horses. Vet Rec 165:740–743

    Article  CAS  Google Scholar 

  242. Heeney JL, Valli VEO (1985) Bovine ocular squamous cell carcinoma: an epidemiological perspective. Can J Comp Med 49:21–26

    CAS  Google Scholar 

  243. Sloss V, Smith TJ, De Yi G (1986) Controlling ocular squamous cell carcinoma in Hereford cattle. Aust Vet J 63:248–251

    Article  CAS  Google Scholar 

  244. Russell WC, Brinks JS, Kainer RA (1976) Incidence and heritability of ocular squamous cell tumors in Hereford cattle. J Anim Sci 43:1156–1162

    CAS  Google Scholar 

  245. Anderson DE, Badzioch M (1991) Association between solar radiation and ocular squamous cell carcinoma in cattle. Am J Vet Res 52:784–788

    CAS  Google Scholar 

  246. Gharagozlou MJ, Hekmati P, Ashrafihelan J (2007) A clinical and histopathological study of ocular neoplasms in dairy cattle. Veterinarski Arh 77:409–426

    Google Scholar 

  247. Morris CA (2007) A review of genetic resistance to disease in Bos Taurus cattle. Vet J 174:481–491

    Article  CAS  Google Scholar 

  248. Anderson DE, Skinner PE (1961) Studies on bovine ocular squamous carcinoma (“Cancer Eye”) XI. Effects of sunlight. J Anim Sci 20:474–477

    Google Scholar 

  249. Radostits OM, Arundel JH, Gay CC, Blood DC, Hinchcliff KW (2000) Veterinary medicine: a textbook of the diseases of cattle, sheep, pigs, goats and horses. W.B. Saunders, London

    Google Scholar 

  250. Woodward RR, Knapp B Jr (1950) The hereditary aspect of eye cancer in hereford cattle. J Anim Sci 9:578–581

    CAS  Google Scholar 

  251. Blackwell RL, Anderson DE, Knox JH (1956) Age incidence and heritability of cancer eye in hereford cattle. J Anim Sci 15:943–951

    Google Scholar 

  252. SGdS W (1974) Das Vulvacarcinom beim Rind auf Ceylon. Zbl Vet Med A21:834–843

    Google Scholar 

  253. Hühnermund G (1973) Disposition der Ayreshirerasse zu karzinomatösen Veränderungen an Vulva und Membrana nicitans bei extremen Sonneneinwirkungen in den Tropen. Berl Münchn Tierärztl Wsch 21:414–415

    Google Scholar 

  254. Yeruham I, Perl S, Orgad U, Yakobson B (1999) Tumours of the vulva and vagina in cattle – a 10-year survey. Vet J 158:237–239

    Article  CAS  Google Scholar 

  255. Wettimuny SG (1974) Bovine vulval carcinoma in Ceylon. Zentralbl Veterinärmed A 21:834

    Article  CAS  Google Scholar 

  256. Kopecky KE, Pugh GW Jr, Hughes DE (1980) Wavelength of ultraviolet radiation that enhances onset of clinical infectious bovine keratoconjunctivitis. Am J Vet Res 41:1412–1415

    CAS  Google Scholar 

  257. Forrest JW, Fleet MR (1985) Lack of tanning in white Merino sheep following exposure to ultraviolet light. Aust Vet J 62:244–246

    Article  CAS  Google Scholar 

  258. Turner AS, Mansmann RA, McAllister ES, Pratt PW (1982) Equine medicine and surgery, 3rd edn. American Veterinary, Santa Barbara

    Google Scholar 

  259. Dugan SJ, Curtis CR, Roberts SM, Severin GA (1991) Epidemiologic study of ocular/adnexal squamous cell carcinoma in horses. J Am Vet Med Assoc 198:251–256

    CAS  Google Scholar 

  260. Eberlein B, Bergner T, Przybilla B (1992) Demonstration of olaquindox phototoxicity in vitro. Photodermatol Photoimmunol Photomed 9:63–66

    CAS  Google Scholar 

  261. Bovenschen HJ, Peters B, Koetsier MI, Van Der Valk PG (2009) Occupational contact dermatitis due to multiple sensitizations in a pig farmer. Contact Dermat 61:127–128

    Article  CAS  Google Scholar 

  262. Schauder S, Schröder W, Geier J (1996) Olaquindox-induced airborne photoallergic contact dermatitis followed by transient or persistent light reactions in 15 pig breeders. Contact Dermat 35:344–354

    Article  CAS  Google Scholar 

  263. Belhadjali H, Marguery MC, Journé F, Giordano-Labadie F, Lefebvre H, Bazex J (2002) Allergic and photoallergic contact dermatitis to Olaquindox in a pig breeder with prolonged photosensitivity. Photodermatol Photoimmunol Photomed 18:52–53

    Article  CAS  Google Scholar 

  264. Bartussek H (1988) Haltung. In: Haiger A, Storhas R, Bartussek H (eds) Artgemäße Nutztierhaltung. Ulmer, Stuttgart

    Google Scholar 

  265. Sozonov JI, Inesin VA (1975) Ergebnisse der UV-Bestrahlung von Kälbern. Landwirtschaftliches Zentralbl 4:460

    Google Scholar 

  266. Hidiroglou M, Proulx JG, Roubos D (1979) 25-hydroxyvitamin D in plasma of cattle. J Dairy Sci 62:1076–1080

    Article  CAS  Google Scholar 

  267. Horst RL, Littledike ET, Riley JL, Napoli JL (1981) Quantitation of vitamin D and its metabolites and their plasma concentrations in five species of animals. Anal Biochem 116:189–203

    Article  CAS  Google Scholar 

  268. Hidiroglou M, Williams CJ, Proulx JG (1985) Plasma vitamin D3 response in cattle and sheep exposed to ultraviolet radiation. Int J Vitam Nutr Res 55:41–46

    CAS  Google Scholar 

  269. Flachowsky E, Graf H, Matthey M, Ochrimenko WI, Beyersdorfer S, Dorn W et al (1993) Einfluß von Jahreszeit, Haltungsform und einer Vit.D3 Zulage auf den Vit.A, D und E Gehalt von Kuhmilch sowie die 25-OH Vit-D3-Konzentration im Blutplasma von Milchkühen. Mh Vetmed 48:197–202

    Google Scholar 

  270. Richter GH, Flachowsky G, Matthey M, Ochrimenko K, Wolfram D, Schade T (1990) Einfluß der Stall- bzw. Auslaufhaltung auf die 25-OH-Vitamin-D3-Blutplasmakonzentration bei Mastbullen. Mh Vet Med 45:227

    CAS  Google Scholar 

  271. Hidiroglou M (1987) Kinetics of intravenously administered 25-hydroxyvitamin D3 in sheep and the effect of exposure to ultraviolet radiation. J Anim Sci 65:808–814

    CAS  Google Scholar 

  272. Hidiroglou M, Karpinski K (1989) Providing vitamin D to confined sheep by oral supplementation vs ultraviolet irradiation. J Anim Sci 67:794–802

    CAS  Google Scholar 

  273. Smith BS, Wright H (1984) Relative contributions of diet and sunshine to the overall vitamin D status of the grazing ewe. Vet Rec 115:537–538

    Article  CAS  Google Scholar 

  274. Zintzen H, Boyazoglu PA (1973) Vitamin D and its relation to calcium phosphorus metabolism in ruminants. J S Afr Vet Med Assoc 44:25–36

    CAS  Google Scholar 

  275. El Shorafa WM, Feaster JP, Ott EA, Asquith RL (1979) Effect of vitamin D and sunlight on growth and bone development of young ponies. J Anim Sci 48:882–886

    Google Scholar 

  276. Piccione G, Assenza A, Fazio F, Bergero D, Caola G (2008) Daily rhythms of serum vitamin D-metabolites, calcium and phosphorus in horses. Acta Vet Brno 77:151–157

    Article  CAS  Google Scholar 

  277. Piccione G, Assenza A, Grasso F, Caola G (2004) Daily rhythm of circulating fat soluble vitamin concentration (A, D, E and K) in the horse. J Circadian Rhythms 2(1):3

    Article  Google Scholar 

  278. Hart EB, Steenbock H, Lepkovsky S, Halpin JG (1923) The nutritional requirements of baby chicks: III. The relation of light to the growth of the chicken. J Biol Chem 58:33–42

    CAS  Google Scholar 

  279. Bethke RM, Kennard DC, Kik MC (1925) Nutritional studies of the growing chick: I. The relation of sunlight and green clover to leg weakness in chicks. J Biol Chem 63:377–390

    CAS  Google Scholar 

  280. Mussehl FE, Bancroft PM (1925) Nutrient requirements of growing chicks. Poult Sci 4:118–122

    Article  Google Scholar 

  281. Heuser GF, Norris LC (1929) Rickets in chicks: III. The effectiveness of mid-summer sunshine and irradiation from quartz mercury vapour arc in preventing rickets. Poult Sci 8:89–98

    CAS  Google Scholar 

  282. Scott ML, Nesheim MC, Young RJ (1982) Nutrition of the chicken. M. L. Scott and Associates, Ithaca

    Google Scholar 

  283. Bernard JB, Watkins BE, Ullrey DE (1989) Manifestations of vitamin D deficiency in chicks reared under different artificial lighting regimes. Zoo Biol 8:313–395

    Article  Google Scholar 

  284. Ferguson GW, Jones JR, Gehrmann WH, Hammack SH, Talent LG, Hudson RD et al (1996) Indoor husbandry of the panther chameleon Chamaeleo [Furcifer] pardalis: effects of dietary vitamins A and D and ultraviolet irradiation on pathology and life-history traits. Zoo Biol 15:279–299

    Article  Google Scholar 

  285. Ferguson GW, Gehrmann WH, Chen TC, Dierenfeld ES, Holick MF (2002) Effects of artificial ultraviolet light exposure on reproductive success of the female panther chameleon (Furcifer pardalis) in captivity. Zoo Biol 21:525–537

    Article  Google Scholar 

  286. Narbaitz R, Tsang CPW (1989) Vitamin D deficiency in the chick embryo: effects on prehatching motility and on the growth and differentiation of bones, muscles, and parathyroid glands. Calcif Tissue Int 44:348–355

    Article  CAS  Google Scholar 

  287. Packard MJ, Clark NB (1996) Aspects of calcium regulation in embryonic lepidosaurians and chelonians and a review of calcium regulation in embryonic archosaurians. Physiol Zool 69:435–466

    CAS  Google Scholar 

  288. Häder DP, Sinha RP (2005) Solar ultraviolet radiation-induced DNA damage in aquatic organisms: Potential environmental impact. Mutat Res Fundam Mol Mech Mutagen 571:221–233

    Article  CAS  Google Scholar 

  289. Madronich S, Flocke S (1995) Theoretical estimation of biologically effective UV radiation at the Earth’s surface. In: Zerefos CS, Bais AF (eds) Solar ultraviolet radiation: modelling, measurements, and effects, pp 23–48

    Google Scholar 

  290. Rozema J, Björn LO, Bornman JF, Gaberscik A, Häder DP, Trost T et al (2002) The role of UV-B radiation in aquatic and terrestrial ecosystems-An experimental and functional analysis of the evolution of UV-absorbing compounds. J Photochem Photobiol B 66:2–12

    Article  CAS  Google Scholar 

  291. Huot Y, Jeffrey WH, Davis RF, Cullen JJ (2000) Damage to DNA in bacterioplankton: a model of damage by ultraviolet radiation and its repair as influenced by vertical mixing. Photochem Photobiol 72:62–74

    Article  CAS  Google Scholar 

  292. Zepp RG (2003) UV exposure of coral assemblages in the Florida Keys. Environmental Protection Agency Report No. 600/R-03/095. U.S. Environmental Protection Agency, Washington, DC

    Google Scholar 

  293. Kouwenberg JHM, Lantoine F (2007) Effects of ultraviolet-B stressed diatom food on the reproductive output in Mediterranean Calanus helgolandicus (Crustacea; Copepoda). J Exp Mar Biol Ecol 341:239–253

    Article  Google Scholar 

  294. Kouwenberg JHM, Browman HI, Runge JA, Cullen JJ, Davis RF, St-Pierre JF (1999) Biological weighting of ultraviolet (280–400 nm) induced mortality in marine zooplankton and fish. II. Calanus finmarchicus (Copepoda) eggs. Mar Biol 134:285–293

    Article  Google Scholar 

  295. Hunter JR, Taylor JH, Moser HG (1979) Effect of ultraviolet irradiation on eggs and larvae on the northern anchovy, Engraulis mordax, and the Pacific mackerel, Scomber japonicus, during the embryonic stage. Photochem Photobiol 29:325–338

    Article  CAS  Google Scholar 

  296. Bell G, Hoar W (1950) Some effects of ultraviolet radiation on sockeye salmon eggs and alevins. Can J Res 28:35–43

    Article  Google Scholar 

  297. Zagarese HE, Williamson CE (2001) The implications of solar UV radiation exposure for fish and fisheries. Fish Fish 2:250–260

    Article  Google Scholar 

  298. Kouwenberg JHM, Browman HI, St-Pierre JF, Runge JA, Cullen JJ, Davis RF (1999) Biological weighting of ultraviolet (280–400 nm) induced mortality in marine zooplankton and fish. I. Atlantic cod (Gadus morhua) eggs. Mar Biol 134:269–284

    Article  Google Scholar 

  299. Brocklebank JR, Armstrong RD (1994) Solar dermatitis in hatchery-reared salmonids in British Columbia. Can Vet J 35:651–652

    CAS  Google Scholar 

  300. Lowe C, Goodman-Lowe G (1996) Suntanning in hammerhead sharks. Nature 383:677

    Article  CAS  Google Scholar 

  301. Dunbar C (1959) Sunburn in fingerling rainbow trout. Prog Fish Cult 21:74

    Article  Google Scholar 

  302. Bullock AM, Coutts RR (1985) The impact of solar ultraviolet radiation upon the skin of rainbow trout, Salmo gairdneri Richardson, farmed at high altitude in Bolivia. J Fish Dis 8:263–272

    Article  Google Scholar 

  303. McArdle J, Bullock AM (1987) Solar ultraviolet radiation as a causal factor of “summer syndrome” in cage-reared Atlantic salmon, Salmo solar L.: a clinical and histopathological study. J Fish Dis 10:255–264

    Article  Google Scholar 

  304. Kaweewat K, Hofer R (1997) Effect of UV-B radiation on goblet cells in the skin of different fish species. J Photochem Photobiol B 41:222–226

    Article  CAS  Google Scholar 

  305. Rodger HD (1991) Summer lesion syndrome in salmon: a retrospective study. Vet Rec 129:237–239

    Article  CAS  Google Scholar 

  306. Bullock AM, Roberts RJ, Waddington P, Bookless WD (1983) Sunburn lesions in koi carp. Vet Rec 112:551

    Article  CAS  Google Scholar 

  307. Markkula SE, Karvonen A, Salo H, Valtonen ET, Jokinen EI (2007) Ultraviolet B irradiation affects resistance of rainbow trout (Oncorhynchus mykiss) against bacterium Yersinia ruckeri and trematode Diplostomum spathaceum. Photochem Photobiol 83:1263–1269

    Article  CAS  Google Scholar 

  308. Roberts R (2001) Fish pathology. Churchill Livingstone, Edinburgh

    Google Scholar 

  309. Allison L (1960) “Sunburning” fingerling lake trout with ultraviolet light and the effect off a niacin-fortified diet. Prog Fish Cult 22:114–116

    Article  Google Scholar 

  310. Wall AE (1998) Cataracts in farmed Atlantic salmon (Salmo salar) in Ireland, Norway and Scotland from 1995 to 1997. Vet Rec 142:626–630

    Article  CAS  Google Scholar 

  311. Karentz D, McEuen FS, Land MC, Dunlap WC (1991) Survey of mycosporine-like amino acid compounds in Antarctic marine organisms: Potential protection from ultraviolet exposure. Mar Biol 108:157–166

    Article  CAS  Google Scholar 

  312. Uitz J, Claustre H, Morel A, Hooker SB (2006) Vertical distribution of phytoplankton communities in open ocean: an assessment based on surface chlorophyll. J Geophys Res 111:C08005

    Article  Google Scholar 

  313. Kessler K, Lockwood RS, Williamson CE, Saros JE (2008) Vertical distribution of zooplankton in subalpine and alpine lakes: Ultraviolet radiation, fish predation, and the transparency-gradient hypothesis. Limnol Oceanogr 53:2374–2382

    Article  Google Scholar 

  314. Yamashita Y, Tanoue E (2009) Basin scale distribution of chromophoric dissolved organic matter in the Pacific Ocean. Limnol Oceanogr 54:598–609

    Article  CAS  Google Scholar 

  315. Loiselle SA, Bracchini L, Dattilo AM, Ricci M, Tognazzi A, Cózar A et al (2009) Optical characterization of chromophoric dissolved organic matter using wavelength distribution of absorption spectral slopes. Limnol Oceanogr 54:590–597

    Article  CAS  Google Scholar 

  316. Browman HI, Vetter RD, Rodriguez CA, Cullen JJ, Davis RF, Lynn E et al (2003) Ultraviolet (280–400 nm)-induced DNA damage in the eggs and larvae of Calanus finmarchicus G. (Copepoda) and Atlantic cod (Gadus morhua). Photochem Photobiol 77:397–404

    Article  CAS  Google Scholar 

  317. Bullock AM (1982) The pathological effects of ultraviolet radiation on the epidermis of teleost fish with reference to the solar radiation effect in higher animals. Proc R Soc Edinb 81B:199–210

    Google Scholar 

  318. Bullock AM, Roberts RJ (1979) Skin photosensitisation by phenothiazine in cultured rainbow trout (Salmo gairdneri Richardson). Vet Rec 104:55

    Article  CAS  Google Scholar 

  319. Bullock AM, Roberts RJ (1981) Sunburn lesions in salmonid fry: a clinical and histological report. J Fish Dis 4:271–275

    Article  Google Scholar 

  320. Bullock AM (1985) The effect of ultraviolet-B radiation upon the skin of the plaice, Pleuronectes platessa L., infected with the bodonid ectoparasite Ichthyobodo necator (Henneguy, 1883). J Fish Dis 8:547–550

    Article  Google Scholar 

  321. Jokinen IE, Markkula ES, Salo HM, Kuhn P, Nikoskelainen S, Arts MT et al (2008) Exposure to increased ambient ultraviolet B radiation has negative effects on growth, condition and immune function of juvenile Atlantic salmon (Salmo salar). Photochem Photobiol 84:1265–1271

    Article  CAS  Google Scholar 

  322. Markkula SE, Salo HM, Immonen AK, Jokinen EI (2005) Effects of short- and long-term ultraviolet B irradiation on the immune system of the common carp (Cyprinus carpio). Photochem Photobiol 81:595–602

    Article  CAS  Google Scholar 

  323. Armstrong TN, Reimschuessel R, Bradley BP (2002) DNA damage, histologial changes and DNA repair in larval Japanese medaka (Oryzias latipes) exposed to ultraviolet-B radiation. Aquat Toxicol 58:1–14

    Article  CAS  Google Scholar 

  324. Alemanni ME, Lozada M, Zagarese HE (2003) Assessing sublethal effects of ultraviolet radiation in juvenile rainbow trout (Oncorhynchus mykiss). Photochem Photobiol Sci 2:867–870

    Article  CAS  Google Scholar 

  325. Bullock AM (1982) The pathological effects of ultraviolet radiation on the epidermis of teleost fish with reference to the solar radiation effect in higher animals. Proc R Soc Edinb B Biol Sci 81:199–210

    Google Scholar 

  326. Nowak BF (1999) Significance of environmental factors in aetiology of skin diseases of teleost fish. Bull Eur Assoc Fish Pathol 19:290–292

    Google Scholar 

  327. Handlinger J, Soltani M, Percival S (1997) The pathology of Flexibacter maritimus in aquaculture species in Tasmania, Australia. J Fish Dis 20:159–168

    Article  Google Scholar 

  328. Cullen AP, Monteith-McMaster CA, Sivak JG (1994) Lenticular changes in rainbow trout following chronic exposure to UV radiation. Curr Eye Res 13:731–737

    Article  CAS  Google Scholar 

  329. Nelson PA, Kajiura SM, Losey GS (2003) Exposure to solar radiation may increase ocular UV-filtering in the juvenile scalloped hammerhead shark, Sphyrna lewini. Mar Biol 142:53–56

    Google Scholar 

  330. Zeng Z, Richardson J, Verduzco D, Mitchell DL, Patton EE (2009) Zebrafish have a competent p53-dependent nucleotide excision repair pathway to resolve ultraviolet B-induced DNA damage in the skin. Zebrafish 6:405–415

    Article  CAS  Google Scholar 

  331. Banaszak AT (2003) Photoprotective physiological and biochemical responses of aquatic organisms. In: Helbling EW, Zagarese HE, Zagarese H (eds) UV effects in aquatic organisms and ecosystems. Royal Society of Chemistry, Cambridge, UK, pp 329–356

    Chapter  Google Scholar 

  332. Eckes MJ, Siebeck UE, Dove S, Grutter AS (2008) Ultraviolet sunscreens in reef fish mucus. Mar Ecol Prog Ser 353:203–211

    Article  CAS  Google Scholar 

  333. Zamzow JP (2007) Ultraviolet-absorbing compounds in the mucus of shallow-dwelling tropical reef fishes correlate with environmental water clarity. Mar Ecol Prog Ser 343:263–271

    Article  CAS  Google Scholar 

  334. Zamzow JP (2004) Effects of diet, ultraviolet exposure, and gender on the ultraviolet absorbance of fish mucus and ocular structures. Mar Biol 144:1057–1064

    Article  Google Scholar 

  335. Rick IP, Bakker TCM (2008) Color signaling in conspicuous red sticklebacks: do ultraviolet signals surpass others? BMC Evol Biol 8:189

    Article  Google Scholar 

  336. Gacic Z, Damjanovic I, Mickovic B, Hegedis A, Nikcevic M (2007) Spectral sensitivity of the dogfish shark (Scyliorhinus canicula). Fish Physiol Biochem 33:21–27

    Article  CAS  Google Scholar 

  337. Matsumoto T, Ihara H, Ishida Y, Yamamoto S, Murata O, Ishibashi Y (2010) Spectral sensitivity of juvenile chub mackerel (Scomber japonicus) in visible and ultraviolet light. Fish Physiol Biochem 36(1):63–70

    Article  CAS  Google Scholar 

  338. Leech DM, Johnsen S (2003) Behavioral response – UVR avoidance and vison. In: Helbling EW, Zagarese HE, Zagarese H (eds) UV effects in aquatic organisms and ecosystems. Royal Society of Chemistry, London, pp 329–356

    Google Scholar 

  339. Leech DM, Johnsen S (2009) Light, biological receptors. In: Likens GE (ed) Encyclopedia of inland waters. Elsevier, Oxford, pp 671–681

    Chapter  Google Scholar 

  340. Holtby LB, Bothwell ML (2008) Effects of solar ultraviolet radiation on the behaviour of juvenile coho salmon (Oncorhynchus kisutch): avoidance, feeding, and agonistic interactions. Can J Fish Aquat Sci 65:701–711

    Article  Google Scholar 

  341. Rao DS, Raghuramulu N (1996) Food chain as origin of vitamin D in fish. Comp Biochem Physiol A Physiol 114:15–19

    Article  Google Scholar 

  342. Copping AM (1934) Origin of vitamin D in cod-liver oil: vitamin D content of zooplankton. Biochem J 28:1516–1520

    CAS  Google Scholar 

  343. Rao DS, Raghuramulu N (1997) Vitamin D3 in Tilapia mossambica: relevance of photochemical synthesis. J Nutr Sci Vitaminol 43:425–433

    Article  CAS  Google Scholar 

  344. Lock EJ, Waagbo R, Wendelaar Bonga S, Flik G (2010) The significance of vitamin D for fish: a review. Aquac Nutr 16:100–116

    Article  CAS  Google Scholar 

  345. Ferguson GW, Brinker AM, Gehrmann WH, Bucklin SE, Baines FM, Mackin SJ (2010) Voluntary exposure of some western-hemisphere snake and lizard species to ultraviolet-B radiation in the field: how much ultraviolet-B should a lizard or snake receive in captivity? Zoo Biol 29(3):317–334

    Article  Google Scholar 

  346. Gölthenboth R (1982) Höhensonne für Zootiere im Zoo Berlin. Berliner Münchner Tierärztliche Wochenschrift 95(11):220

    Google Scholar 

  347. Morrisey JK, Reichard T, Lloyd M, Bernard J (1995) Vitamin-D-deficiency rickets in three colobus monkeys (Colobus guereza kikuyuensis) at the Toledo Zoo. J Zoo Wildl Med 26(4):564–568

    Google Scholar 

  348. Hofmann-Parisot M (1995) Result of a European-wide inquiry about the use of artificial UV radiation sources in zoo animal husbandry with special regard to the mammals (Primates/Simiae/monkeys). Berl Münch Tierärztl Wschr 108:185–191

    CAS  Google Scholar 

  349. Tonge S (1985) The management of juvenile telfair’s skinks leiolopisma telefairii with particular reference to the role of ultra violet light. In: Reptiles: breeding, behaviour and veterinary aspects. British Herpetological Society, London, pp 61–72

    Google Scholar 

  350. Bosch H, Frank W (1983) Häufige Erkrankungen bei im Terrarium gehaltenen Amphibien und Reptilien. Salamandra 19:29–54

    Google Scholar 

  351. McCrystal HG, Behler JL (1982) Husbandry and reproduction of captive Giant ameiva lizards. Int Zoo Yearb 22:159–163

    Article  Google Scholar 

  352. Townsend CR, Cole CJ (1985) Additional notes on requirements of Captive whiptail lizards (cnemidophorus) with emphasis on ultraviolet radiation. Zoo Biol 4:49–55

    Article  Google Scholar 

  353. Acierno MJ, Mitchell MA, Roundtree MK, Zachariah TT (2006) Effects of ultraviolet radiation on 25-hydroxyvitamin D3 synthesis in red-eared slider turtles (Trachemys scripta elegans). Am J Vet Res 67:2046–2049

    Article  CAS  Google Scholar 

  354. Acierno MJ, Mitchell MA, Zachariah TT, Roundtree MK, Kirchgessner MS, Guzman DSM (2008) Effects of ultraviolet radiation on plasma 25-hydroxyvitamin D3 concentrations in corn snakes (Elaphe guttata). Am J Vet Res 69:294–297

    Article  CAS  Google Scholar 

  355. Gehrmann WH (1987) Ultraviolet irradiances of various lamps used in animal husbandry. Zoo Biol 6:117–127

    Article  Google Scholar 

  356. Burger RM, Gehrmann WH, Ferguson GW (2007) Evaluation of UVB reduction by materials commonly used in reptile husbandry. Zoo Biol 26:417–423

    Article  Google Scholar 

  357. Gardiner DW, Baines FM, Pandher K (2009) Photodermatitis and photokeratoconjunctivitis in a ball python (Python regius) and a blue-tongue skink (Tiliqua spp.). J Zoo Wildl Med 40:757–766

    Article  Google Scholar 

  358. Farman JC, Gardiner BG, Shanklin JD (1985) Large losses of total ozone in Antarctica reveal seasonal ClOx/NOx interaction. Nature 315:207–210

    Article  CAS  Google Scholar 

  359. Blumthaler M, Ambach W (1990) Indication of increasing solar ultraviolet-B radiation flux in alpine regions. Science 248:206–208

    Article  CAS  Google Scholar 

  360. Rünger TM (2007) How different wavelengths of the ultraviolet spectrum contribute to skin carcinogenesis: The role of cellular damage responses. J Investig Dermatol 127:2103–2105

    Article  CAS  Google Scholar 

Books and Reviews

  • Björn LO (2008) Photobiology. The science of life and light. Springer, New York

    Book  Google Scholar 

  • Cockell C, Blaustein AR (2001) Ecosystems, evolution, and ultraviolet radiation. Springer, New York

    Book  Google Scholar 

  • Gao W, Schmoldt DL, Slusser JR (2010) UV radiation in global climate change. Measurements, modeling and effects on ecosystems. Springer, Heidelberg

    Book  Google Scholar 

  • Ghetti F, Checcucci G, Bornman JF (2006) Environmental UV radiation: impact on ecosystems and human health, NATO science series, IV earth and environment sciences. Springer, Dordrecht

    Book  Google Scholar 

  • Helbling EW, Zagarese HE, Zagarese H (2003) UV effects in aquatic organisms and ecosystems‎, Comprehensive series in photochemical and photobiological sciences. Royal Society of Chemistry, Cambridge

    Book  Google Scholar 

  • Lumsden PJ (1997) Plants and UV-B: responses to environmental change, Society for experimental biology seminar series. Cambridge Univeristy Press, Cambridge

    Book  Google Scholar 

  • Mora SJD, Demers S, Vernet M (2000) The effects of UV radiation in the marine environment, Cambridge environment chemistry series. Camridge University Press, Cambridge

    Book  Google Scholar 

  • Reichrath J (2008) Sunlight, vitamin D and skin cancer, Advances in experimental medicine and biology. Springer, New York

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Philipp Weihs .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this entry

Cite this entry

Weihs, P., Schmalwieser, A.W., Schauberger, G. (2012). UV Effects on Living Organisms. In: Meyers, R.A. (eds) Encyclopedia of Sustainability Science and Technology. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-0851-3_454

Download citation

Publish with us

Policies and ethics