Encyclopedia of Sustainability Science and Technology

2012 Edition
| Editors: Robert A. Meyers

Groundwater Salinity Due to Urban Growth

Reference work entry
DOI: https://doi.org/10.1007/978-1-4419-0851-3_439

Definition of the Subject and Its Importance

The population of the world is increasing at different rates according to the period of time and geographical position; however, at present, the number of cities that have a population larger than one million are estimated as more than 336, while in the 1950s, 83 cities were in that range. One such urban development has been Mexico City, which has more than 18.6 million population, which could be considered even a larger number (nearly 28 million) if the adjoining urban sprawl is included. Cities have often solved their water supply requirements by means of groundwater extraction . Usually, in ancient times, cities were founded on sites where water was directly available. Water supply works tapped springs and surface water. Later, when the number of inhabitants and economical activities increased, shallow dug wells were the solution to cope with water needs. As historical time went by, the population and economical activities of...

This is a preview of subscription content, log in to check access

Bibliography

Primary Literature

  1. 1.
    AIC (1995) El Agua y la Ciudad de México. Academia de la Investigación Científica, Academia Nacional de Ingeniería, Academia Nacional de Medicina, National Academy of Sciences (through the National Research Council), 364 ppGoogle Scholar
  2. 2.
    Ángeles-Serrano G, Perevochtchicova M, Carrillo-Rivera JJ (2008) Posibles controles hidrogeológicos de impacto ambiental por la extracción de agua subterránea en Xochimilco, México. J Lat Am Geogr 7(I):39–56CrossRefGoogle Scholar
  3. 3.
    Bouwer H (1978) Groundwater hydrology, McGraw-Hill series in water resources and environmental engineering. McGraw-Hill, Sydney, 480ppGoogle Scholar
  4. 4.
    Carrillo-Rivera JJ (1998) Monitoring of exploited aquifers resulting in subsidence, example: Mexico City. In: Van Lanen HAJ (ed) Monitoring for groundwater management in (semi-)arid regions, vol 57, Studies and reports in hydrology. UNESCO, Paris, pp 151–165Google Scholar
  5. 5.
    Carrillo-Rivera JJ, Angeles-Serrano G, Hernández GG, Hergt T (2002) Estudio de hidrología subterránea sobre el área de Xochimilco, Distrito Federal. In: Programa rector de manejo del área natural protegida, ejidos de Xochimilco y San Gregorio Atlapulco. Secretaría del Medio Ambiente del Gobierno del Distrito Federal, Distrito FederalGoogle Scholar
  6. 6.
    Carrillo-Rivera JJ, Cardona A, Edmunds WM (2002) Use of abstraction regime and knowledge of hydrogeological conditions to control high-fluoride concentration in abstracted groundwater: San Luis Potosi basin, Mexico. J Hydrol 261:24–47CrossRefGoogle Scholar
  7. 7.
    Carrillo-Rivera JJ, Cardona A, Huizar-Alvarez R, Graniel E (2008) Response of the interaction between groundwater and other components of the environment in Mexico. Environ Geol 2:303–319CrossRefGoogle Scholar
  8. 8.
    Carrillo-Rivera JJ, Cardona A (2008) Groundwater flow system response in thick aquifer units: theory and practice in Mexico. Selected Papers, XXXIII-IAH internacional congress, Zacatecas, México, vol 12. Asociación Internacional de Hidrogeólogos, Editorial Balkema, Taylor & Francis, Leiden, pp 25–46Google Scholar
  9. 9.
    CAVM (Comisión De Aguas Del Valle De México) (1966) Datos del Valle de México, Período 1959–1963. Bol Mec Suelos 4Google Scholar
  10. 10.
    Edmunds WM, Carrillo-Rivera JJ, Cardona A (2002) Geochemical evolution of groundwater beneath Mexico City. J Hydrol 258:1–24CrossRefGoogle Scholar
  11. 11.
    De Cserna Z, De la Fuente DM, Palacios NM, Triay L, Mitre SLM, Mota PR (1988) Estructura geológica, gravimétrica, sismicidad y relaciones neotectónicas regionales de la Cuenca de México, Institute of Geology, UNAM, México. Boletín 104:71pp (4maps)Google Scholar
  12. 12.
    Foster S, Garduño H, Evans R, Olson D, Yuan T, Zhang W, Han Z (2004) Quaternary aquifer of the North China Plain – assessing and achieving groundwater resource sustainability. Hydrogeol J 12:81–93CrossRefGoogle Scholar
  13. 13.
    Freeze A, Cherry J (1979) Groundwater. Prentice, London, 490ppGoogle Scholar
  14. 14.
    Graniel-Castro D, Morris LB, Carrillo-Rivera JJ (1999) Effects of urbanization on groundwater resources of Mérida, Yucatan. Environ Geol 37(4):303–312CrossRefGoogle Scholar
  15. 15.
    Herrera I, Alberro J, León JL, Chen B (1974) Análisis de los asentamientos para construcción de los lagos del Plan Texcoco. UNAM, Instituto de Ingeniería, Internal Report No. 340Google Scholar
  16. 16.
    Huizar-Alvarez R, Carrillo-Rivera JJ, Angeles-Serrano G, Hergt T, Cardona A (2004) Chemical response to groundwater extraction southeast of México City. Hydrogeol J 12:436–450CrossRefGoogle Scholar
  17. 17.
    Llamas MR (1999) La inserción de las aguas subterráneas en los sistemas de gestión integrada. Bol Geol Min 110(4):253–370Google Scholar
  18. 18.
    Marsal RJ, Graue R (1969) The subsoil of lake Texcoco. In: Carrillo N (ed) The subsidence of Mexico City and Lake Texcoco project. Secr. de Hacienda y Crédito Publico, México, pp 167–203Google Scholar
  19. 19.
    Mesri G, Rokhsar A, Bohor BF (1975) Composition and compressibility of typical samples of Mexico City clays. Geotechnique 25:527–554CrossRefGoogle Scholar
  20. 20.
    Ortega GA, Cherry JA, Rudolph DL (1993) Large-scale aquitard consolidation near Mexico City. Ground Water 31:708–718CrossRefGoogle Scholar
  21. 21.
    Rivera A, Ledoux E (1991) Non-linear modelling of groundwater flow and total subsidence in the Mexico City aquifer-aquitard system. In: Proceedings of the fourth international symposium on land subsidence, Houston, May 1991, IAHS Publication No. 200, pp 45–58Google Scholar
  22. 22.
    Rudolph DL, Cherry JA, Farvolden RN (1991) Field investigations and solute transport in a lacustrine aquitard near Mexico City. Water Resour Res 27:2187–2201CrossRefGoogle Scholar
  23. 23.
    Theis CV (1935) The relation between the lowering of the piezometric surface and rate and duration of discharge of a well using ground water storage. Trans Am Geophys Union 16:519–524CrossRefGoogle Scholar
  24. 24.
    Tóth J (1995) Hydraulic continuity in large sedimentary basins. Hydrogeol J 3:4–16CrossRefGoogle Scholar
  25. 25.
    Tóth J (1998) Groundwater as a geological agent: an overview of the causes, processes, and manifestations. Hydrogeol J 7:1–14Google Scholar
  26. 26.
    Tóth J (2008) From the artesian paradigm to basin hydraulics. Eötvös Loránd University. Institute of Geography and Earth Sciences, BudapestGoogle Scholar
  27. 27.
    Vázquez-Sánchez E (1995) Hidrogeología del Acuífero de la Ciudad de México. M.Sc. thesis en groundwater. UACPyP, Posgrado en Geofísica, Instituto de Geofísica, UNAMGoogle Scholar
  28. 28.
    Vázquez-Sanchez E, Jaimes-Palomera R (1989) Geología de la Cuenca de México. Geofís Int 28(2):133–190Google Scholar

Books and Reviews

  1. Cardona A, Carrillo-Rivera JJ, Huizar-Alvarez R, Graniel-Castro E (2004) Salinization in coastal aquifers of arid zones: an example from Santo Domingo, Baja California Sur, Mexico. Environ Geol 45(3):350–366CrossRefGoogle Scholar
  2. Cardona A, Carrillo-Rivera JJ, Castro-Larragoitia GJ, Graniel-Castro EH (2008) Combined use of indicators to evaluate waste-water contamination to local flow systems in semi-arid regions: San Luis Potosi, Mexico. Selected Papers XXXIII-IAH internacional congress, Zacatecas, México, vol 12. Asociación Internacional Hidrogeólogos, Ed Balkema, Taylor & Francis, Leiden, pp 85–104Google Scholar
  3. Carrillo-Rivera JJ (1988) The Sierra Madre occidental. In: The geology of North America, hydrogeology, vol 0–2. The Geological Society of North America, Boulder, pp 87–88Google Scholar
  4. Carrillo-Rivera JJ (1993) The hydrogeology of the San Luis Potosi area, Mexico. Ground Water J Assoc Ground Water Sci Eng (Abstracts Students Section, Marzo–Abril p 330)Google Scholar
  5. Carrillo-Rivera JJ (1998) Monitoring of exploited aquifers resulting in subsidence, example: Mexico City. In: Monitoring for groundwater management in (semi-)arid regions, vol 57, Studies and reports in hydrology. UNESCO, Paris, pp 151–166Google Scholar
  6. Carrillo-Rivera JJ (2000) Application of the groundwater-balance equation to indicate interbasin and vertical flow in two semi-arid drainage basins, Mexico. Hydrogeol J 8(5):503–520CrossRefGoogle Scholar
  7. Carrillo-Rivera JJ (2002) Aquifer evaluation. In: Moore JE (ed) Field hydrogeology. Lewis, Boca Raton, pp 79–87 (Chap 6). ISBN 1-56670-587-8Google Scholar
  8. Carrillo-Rivera JJ (2003) Lack of a conceptual system view of groundwater resources in Mexico, editor’s message. Hydrogeol J 11(5):519–520CrossRefGoogle Scholar
  9. Carrillo-Rivera JJ (2004) Congreso conjunto: XXXIII asociación internacional de hidrogeológos y 7º asociación Latinoamericana de hidrología subterránea para el desarrollo, Zacatecas, Zac. Méx. Rev Invest Geogr 55:175–177Google Scholar
  10. Carrillo-Rivera JJ, Adrián Ortega G (2008) Special number of environmental geology. In: XXXIII international hydrogeologic congress on groundwater flow understanding from local to regional scales, vol 55. Springer, Berlin, pp 235–464. ISSN 0943-0105Google Scholar
  11. Carrillo-Rivera JJ, Cardona A (2002) Capítulo 14. In: Michael Price (ed) Agua subterránea. Chapman and Hall. Published by Limusa, Noriega Editores, MéxicoGoogle Scholar
  12. Carrillo-Rivera JJ, Cardona A (2008) Groundwater flow system response in thick aquifer units: theory and practice in Mexico. Selected Papers, XXXIII-IAH internacional congress, Zacatecas, México, vol 12. Asociación Internacional de Hidrogeólogos. Editorial Balkema, Taylor & Francis, Leiden, pp 25–46Google Scholar
  13. Carrillo-Rivera JJ, Ortega Guerrero MA (eds) (2008) Groundwater flow understanding: from local to regional scales. Selected Papers, XXXIII-IAH international congress, Zacatecas, México, vol 12. Asociación Internacional de Hidrogeólogos. Editorial Balkema, Taylor & Francis, Leiden, ISBN: 13 978 0 203 94579 7, p 186Google Scholar
  14. Carrillo-Rivera JJ, Clark DI, Fritz P (1992) Investigating recharge of shallow and paleo-groundwater in the Villa de Reyes Basin, SLP, Mexico, with environmental isotopes, applied hydrogeology. Off J Int Assoc Hydrogeol 4/92:35–48CrossRefGoogle Scholar
  15. Carrillo-Rivera JJ, Cardona A, Moss D (1996) Importance of the vertical component of groundwater flow: a hydrochemical approach in the valley of San Luis Potosí, Mexico. J Hydrol 185:23–44CrossRefGoogle Scholar
  16. Carrillo-Rivera JJ, Cardona A, Hergt T (2001) Inducción de agua termal profunda a zonas someras: Aguascalientes, México. Rev Latinoam Hidrol 1(1):41–53Google Scholar
  17. Carrillo-Rivera JJ, Varsányi I, Kovács LÓ, Cardona A (2007) Tracing groundwater flow systems with hydrogeochemistry in contrasting geological environments. Water Air Soil Pollut 184:77–103CrossRefGoogle Scholar
  18. Carrillo-Rivera JJ, Cardona A, Edmunds WM (2007) Groundwater flow functioning in arid zones with thick volcanic aquifer units: North-Central Mexico. In: International symposium on advances in isotope hydrology and its role in sustainable water resources management (HIS-OIEA) Proc, 21–25 May 2007, vol 1, Vienna, pp 199–211Google Scholar
  19. Facundo-Castillo JR, Carrillo-Rivera JJ, Antigüedad-Auzmendi I, González Hernández P, Leláes-Diaz R, Hernández-Diaz R, Cáceres-Govea D, Hernández-Santana JR, Suárez-Muñoz M, Melán-Rodriguez C, Rodríguez-Piña M (2008) Chemical and geological control of spring water in eastern Guaniguanico mountain range, Pinar del Rio, Cuba. Environ Geol 55(2):247–267CrossRefGoogle Scholar
  20. Fagundo J, Carrillo-Rivera JJ, Antigüedad I, González P, Peláez R, Suárez M, Melián C, Hernández R, Cáceres D (2005) Caracterización hidrogeoquímica del sistema de flujo local-regional de la Sierra del Rosario (Cuba). Rev Latinoam Hidrol 5:75–90Google Scholar
  21. Gutiérrez de MacGregor MT, Carrillo-Rivera JJ, Valdez-Quijada R (1997) Impact of Mexican and USA policies in urban growth and natural resources in the northern border of Mexico, vol 15, Latin American Studies, Nihon-Burajiru Chou Kyokai, Tokio, pp 49–62Google Scholar
  22. Huizar-Alvarez R, Hernández-García G, Carrillo-Rivera JJ (2009) Simulation of the effects from the groundwater flow on the hydrological balance of the Tecocomulco Lagoon, Central Mexico. Open Environ Sci J 3:1–13CrossRefGoogle Scholar
  23. Huizar-Álvarez R, Hernández GG, Carrillo-Martinez M, Carrillo-Rivera JJ, Hergt T, Ángeles-Serrano G (2003) Geologic structure and groundwater flow in the Pachuca–Zumpango sub-basin, central Mexico. Environ Geol 43:385–399Google Scholar
  24. Martinez SE, Carrillo-Rivera JJ (2006) Socio-economic constraints of groundwater in Capital La Rioja, Argentina. Environ Geol 49(6):875–886. doi:10.1007/s00254-006-0183-7Google Scholar
  25. Segovia N, Taméz E, Peña P, Carrillo-Rivera JJ, Acosta E, Armienta MA, Iturbe JL (1999) Groundwater flow system in the valley of Toluca, Mexico: an assay of natural radionuclide specific activities. Appl Radiat Isot 50:589–598CrossRefGoogle Scholar
  26. Van-Lanen AJH, Carrillo-Rivera JJ (1998) Framework for groundwater monitoring in (semi-) arid regions. In: Monitoring for groundwater management in (semi-) arid regions, vol 57, Studies and reports in hydrology. UNESCO, Paris, pp 7–20Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  1. 1.Instituto de GeografíaUNAMCU MéxicoMexico
  2. 2.Cadi Ayyad UniversityMarrakechMorocco